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Abstract—This paper presents a method for imbuing agents
with high-level domain knowledge via short command phrases
given by a human designer. These command phrases, or goals,
are provided at design time and describe the behaviors a human
deems necessary in order to succeed at the current task. At run
time, each goal is converted into a vector representation and is
used to guide the agent’s exploration in a text-based environment.
At each time step, the agent selects behaviors which it believes are
relevant to its current objective, thus reducing the search space
and increasing obtained rewards. We show that task-specific goals
improve performance in a majority of virtual worlds, and discuss
the potential for more general applications.

Index Terms—commonsense reasoning, knowledge representa-
tion, human-computer interaction, vector space models

I. INTRODUCTION

Reinforcement learning is a laborious process, often requir-
ing tens of thousands of failed attempts before a desirable
result is obtained. This is acceptable in simulated environ-
ments, but becomes prohibitive when working with humans
or in domains with time and energy constraints. Ideally, we
would like to create agents that are able to learn the way
humans do, requiring only a few attempts before discovering
a beneficial behavior. We want agents that can ‘get it right’ on
the first try; or at the very least, on the fourth, fifth or sixth
try.

Inspired by the human ability to transfer domain knowledge
via spoken language, we present a method whereby agents
navigating a text-based world are imbued with high-level goals
defined by a human user. The agent evaluates these free-form
instructions using a vector space model that applies common-
sense knowledge in the form of canonical analogy vectors. The
extracted knowledge allows the agent to infer (a) which of the
available objects are relevant to its current goal, and (b) which
possible behaviors are simultaneously relevant to the goal and
reasonable to attempt in conjunction with the given object. A
key advantage of this approach is the general ease of use. No
specialized knowledge is required to formulate instructions for
the agent. One simply specifies two-word commands like ‘find
books’ or ‘create light’.

We apply our method in a setting intended to mimic real-
world constraints. Rather than allowing the agent to try as
many actions as necessary until it finds the right behavior,
we require the agent to select a small subset of its available

action space. This forces the agent to behave in a more
focused manner, and brings its chosen actions more directly in
alignment with its goals. We are encouraged to note that the
benefits of our goal-directed method become more pronounced
as the number of allowed actions decreases. In other words,
the more closely we align our simulation with reality, the more
valuable human input becomes for the agent.

Our primary research intent is to take a step in the direction
of autonomous agents with resilient cognitive abilities. Long-
term, we desire agents that can analyze their environments,
select goals in a self-directed manner, and act upon those
goals in focused and reasonable ways. This paper addresses
the latter-most objective: acting on goals in focused and
reasonable ways.

II. RELATED WORK

Vector space models, in which words or groups of words are
represented as n-dimensional vectors, have been an active area
of research since the 1960s [14]. In recent years, statistical
or count-based models have been replaced by embeddings
trained from large amounts of uncurated data, although some
researchers suggest that the type of embedding algorithm used
may matter less than the hyperparameters used during the
creation process [26] [11] [18].

In our work, we utilize the skip-thought embedding model
presented by Kiros et al. in 2015 [13], which in turn relies on
the word2vec embeddings trained by Mikolov et al. [19]. Word
embeddings created using algorithms such as word2vec, skip-
gram [20], Glove [23], Latent Dirichlet Allocation [1], and
simple co-occurrence matrices [3] can be used for analogical
reasoning tasks such as identifying similarities between words
or associating cities with their capitals [21]. They have also
been applied to more complex reasoning tasks [9] [2].

Skip-thought vectors [13] are an application of the word2vec
skip-gram training method at the sentence level, resulting in an
encoder that represents each input sentence as a fixed-length
vector. (Similar work is also found in the paragraph vectors of
Le and Mikolov [17], Google’s Universal Sentence Encoder
[4], and the InferSent embedding model [5].) Our work builds
on the semantic structure of the skip-thought embedding space
and on the affordance-based reasoning methods of [8] in order
to create an agent capable of accepting user-defined goals and



GOAL VERB NOUN
unlock door turn key
carry water fill bottle
wash floor use sponge

catch butterfly swing net
reach roof climb staircase

study geometry read textbook
enter castle cross drawbridge

enter spaceship use airlock
take bath fill bathtub

activate machine flip switch

Fig. 1. Sample canonical analogy set used to find goal-driven actions. The
full set used in our experiments included 17 goal-verb pairs and 18 goal-
object pairs. Notably, a number of critical in-game objects (such as ‘door’,
‘window’, ‘candy’ and ‘lantern’) do not appear anywhere in the canonical
examples.

behaving in a manner conducive to achieving them. In some
respects, this research resembles the work of Kaplan, Sauer
and Sosa in natural language guided gaming [12], in that both
architectures enable the agent to improve its performance as
a result of text input from a human user. The research differs,
however, in the way language understanding is acquired and
applied. [12] learn visual and language embeddings together in
order to play a visual game. Our agent performs no learning
beyond the pre-trained vector space model. Instead, it uses
the model’s embeddings as a common-sense knowledge base
in order to find concrete actions that support an abstractly-state
goal.

Our agent architecture resembles the work of [8], [15]
and [22], in which an agent interacts repeatedly with a text-
based game engine. Test environments were obtained from the
Autoplay learning environment for interactive fiction [25] and
results are compared to those reported by previous researchers.
These text-based virtual worlds are a challenging and largely
unsolved domain: with over 85,000 nouns and at least 10,000
verbs in the English language, a simple verb/noun action
phrase (such as ‘climb tree’ or ‘eat apple’) can be composed in
over 8.5 x 108 distinct ways, most of which are utter nonsense.
The significance and complexity of these virtual worlds has
been explored by [16], who identified them as a step toward
general problem solving.

III. GOAL-DIRECTED ACTION SELECTION

When attempting to master new tasks, autonomous agents
frequently resort to trial and error. The agent is not familiar
with anything, and so it attempts everything. We seek to break
away from this pattern by imbuing our agents with human-
generated domain knowledge. If a human operator could share
her understanding of the environment with the agent, then the
exploration and learning process would be greatly accelerated.

With this goal in mind, we provide our agent with a set of
pre-defined instructions specific to each task. These instruc-
tions are abstract and generalized, like ‘open things’ or ‘get
stuff’. From this abstract, human-defined domain knowledge,

the agent seeks to identify concrete behaviors which will lead
to the fulfillment of its goals.

We model our agent as a purely text-based entity. The
agent’s state s is a natural language string describing the
immediate environment. Actions are represented as verb/noun
pairs a = v + ‘ ’ + n where v is an English-language verb
and n is an English-language noun that has been extracted
from s using standard part-of-speech tagging. The agent’s
objective is to obtain game points by interacting with the
environment. Different environments award points for different
behaviors, but all environments require a minimum level of
‘reasonableness’ in the agent’s actions, and will not award
points for nonsense behaviors.

In order to ensure proper state space disambiguation, the
agent executes a ‘look’ command on every second iteration
and interprets the resulting game text as its current state. This
limits the agent’s ability to obtain points, but creates a better
testing environment for the behaviors we are studying. For
similar reasons, the agent was not given information about
items carried by the player and was also not given the ability
to execute prepositional phrases such as ‘put book on shelf’.
Because we are interested primarily in the agent’s ability to
efficiently navigate its action space, we also do not implement
a learning model. State-space obfuscation caused by score
reporting is prevented by stripping all numerals from the game
text.

Algorithm 1 Our Agent: Initialization and Control Loop
1: n = final number of nouns desired
2: v = final number of verbs desired
3: goal list = a set of user-defined goals, represented as text
4: navigation verbs = [‘north’, ‘south’, ‘east’, ‘west’, ‘northeast’, ‘southeast’,

‘southwest’, ‘northwest’, ‘up’, ‘down’, ‘enter’]
5: manipulation verbs = [‘get’, ‘drop’, ‘push’, ‘pull’, ‘open’, ‘close’, ‘search’,

‘attack’]
6: for 0 to 2000 do
7: state = game response to last action
8: goal = random.choice(goal list)
9: goal vector = skip-thought encoding of goal text

10: top nouns = results of Algorithm 2
11: top verbs = results of Algorithm 3
12: noun = randomly selected noun from the top nouns
13: verb = randomly selected verb from the top verbs
14: execute action verb + ‘ ’ + noun
15: end for

Given a specific goal g, our agent seeks to identify action tu-
ples (vi,ni) such that the natural language statement v+ ‘ ’ +n
describes a behavior that is supportive of the goal. This is done
within the skip-thought vector space model.

Let goal be a natural language goal and v goal be the
vector encoding of goal. Let (g1,v1) ... (gi,vi) be a set of
encoded canonical examples mapping sample goals to verbs
which help facilitate those goals (see Figure 1, first and second
columns) and let (g1,n1) ... (gi,ni) be a set of encoded
canonical examples mapping sample goals to objects which
help facilitate those goals (see Table X, columns 1 and 3).

We define a canonical goal-to-verb vector Vverb = 1/k∑k
0 (vi - gi). The canonical goal-to-noun vector is defined

similarly: Vnoun = 1/k
∑k

0 (ni - gi).



GAME HUMAN-DEFINED GOALS
zork1 ‘enter house’, ‘get stuff’, ‘create light’, ‘move furniture’, ‘climb tree’, ‘unlock locks’
zork2 ‘enter buildings’, ‘get stuff’, ‘create light’, ‘move things’
zork3 ‘enter buildings’, ‘get stuff’, ‘create light’, ‘move things’
candy ‘get candy’, ‘search for candy’

omniquest ‘get stuff’, ‘climb tree’, ‘wear clothing’, ‘move things’, ‘dig’
bunny ‘enter holes’, ‘get stuff’, ‘move things’, ‘open things’, ‘burn monsters’, ‘unlock locks’

detective ‘get stuff’, ‘enter buildings’
mansion ‘unlock locks’, ‘take stuff’, ‘turn on’, ‘turn off’

spirit ‘open things’, ‘get scrolls’
zenon ‘get stuff’, ‘look under bed’, ‘unlock locks’, ‘turn off light’

cavetrip ‘open furniture’, ‘search furniture’, ‘get clothes’, ‘get food’, ‘get batteries’
parc ‘enter buildings’, ‘get stuff’, ‘close curtains’

Fig. 2. The human-defined goals used in each game. The goals were formulated based on scoring within the specific game.

Algorithm 2 Noun Prioritization
Require: goal vector
Ensure: a list of nouns

1: noun analogy vector = goal vector + canonical goal-to-noun vector (see
Section x.y)

2: game text = input text from the game engine
3: nouns = nouns extracted from game text using NLTK
4: distances = []
5: for all noun in nouns do
6: noun vector = skip-thought encoding of noun
7: distances.append(cosine distance(noun vector, noun analogy vector))
8: end for
9: top nouns = take n nouns, ordered by associated distances (closest first)

10: return top nouns

Algorithm 3 Verb Prioritization
Require: goal vector, top nouns
Ensure: a list of verbs

1: verb analogy vector = goal vector + canonical goal-to-verb vector (see
Section x.y)

2: distances = []
3: noun = randomly selected noun from top nouns + the empty noun ‘’
4: if noun == ‘’ then
5: execute a random selection from navigation verbs
6: end if
7: affordance verbs = the 60 most affordant verbs for noun
8: for all verb in affordance verbs + manipulation verbs do
9: v verb = skip-thought encoding of verb

10: distances.append(cosine distance(verb vector, verb analogy vector))
11: end for
12: top verbs = take n verbs, ordered by associated distances (closest first)
13: return top verbs

On each time step, our agent extracts available nouns from
the game text and prioritizes them based on increasing cosine
distance from the point v goal + Vnoun. This list is then
truncated according to a user-defined constraint on the number
of nouns the agent is allowed to evaluate. A noun is selected
at random from the truncated list, and the agent proceeds to
seek a verb that is simultaneously affordant to the selected
noun [10] and relevant to the current goal. Candidate verbs are
selected by using the affordance vector Vaff as described in
[8]. These candidates are prioritized by decreasing proximity
to v goal + Vnoun, and again the list is truncated based on
user-defined constraints. A goal is selected at random from the
truncated set and the action v + ‘ ’ + n is executed.

IV. RESULTS

A. Experimental Setup

To evaluate our methods, we selected 12 games from the
autoplay repository that exhibited sufficient structural and
narrative cohesion for our purposes.

On each time step, our agent randomly selected a goal
and attempted to find a goal-directed action as described in
Section 3. We compared its performance with two competitors:
(1) A baseline agent that randomly paired nouns and verbs.
Nouns were extracted from the game text, but were not filtered
or prioritized. Verbs were sampled randomly from the 1000
most commonly appearing verbs in Wikipedia. (2) The second
competitor was an affordance agent that tried to pair nouns
with appropriate verbs. Nouns were extracted from the game
text, but were not filtered or prioritized. Verbs were selected
according to the affordance analogy methods presented by [8].

In order for our agent to behave in a goal-directed fashion,
it needed a set of task-specific goals for each trial game. These
goals were acquired by allowing a human to examine the early
stages of each game and provide a set of behaviors he or she
felt were most conducive to point acquisition. The goals were
passed to the agent as a list of natural-language imperatives,
and were subsequently converted to skip-thought vectors. For
the most part, these goals were phrased as generic actions
which the agent then transposed into specific behaviors. For
example, in order to achieve the goal ‘enter house’ in zork1,
the agent must execute the command ‘open window’ followed
by ‘enter window’.

It is important to note that the agent did not use the text
of the goals directly. For example, when instructed to ‘burn
monsters’ in bunny, the agent did not extract the verb ‘burn’
or the noun ‘monsters’ from the goal text. Instead, it encoded
the goal as a 4800-dimensional vector and from that was able
to correctly identify verb/noun pairs that would lead to points.
(In this case, the required command was ‘burn ooze’, and it
only works if the player has already executed the command
‘get torch’.)



Fig. 3. Agent performance with increasing constraints. Cyan: random actions; green: affordance-based actions; red: goal-directed actions. From left to right
for each 4-bar set, the agent was permitted to try (a) 30 verbs (b) 15 verbs (c) 3 verbs (d) 1 verb. The goal-directed agent, in addition to verb constraints,
restricted itself to (a) 15 nouns (b) 5 nouns (c) 3 nouns (d) 1 noun. The results from 45 data runs were averaged to produce the figure.

B. Performance Against Baseline Methods

Figure 3 shows the performance of our Goal-Directed
Agent against the random and affordant baselines. Because the
random agent has no criteria for selecting a subset of verbs
from its 1000-verb base set, it is represented in the figure by
only a single cyan bar. The affordant agent (green) and the
Goal-Directed Agent (red) are each depicted with four bars,
one for each of the constraint options in Table 1.

Examination of Figure 3 reveals that in almost every case,
the highest game score was achieved by the Goal-Directed
Agent. In 8/12 cases, the Goal-Directed Agent’s performance
steadily improved as constraints increased, indicating that the
human guidance had a profound impact on its performance. In
five cases, the agent’s 1-noun-1-verb implementation achieved
the highest score of all agent trials: The agent ‘got it right’
the first time.

C. The Importance of Choosing the Right Goal

Figure 3 immediately raises a critical question: Might it be
the reduction in search space size, and not the specific nature
of the reduction, that produces the observed performance im-
provements? We tested this notion by comparing four different
variants of the Goal-Directed Agent. The first variant used the
task-specific goals shown in Figure 4. The second variant used
a generic goal set designed to be generally relevant across all
text-based adventure games. The generic goals were: ‘enter
buildings’, ‘get stuff’, ‘move things’, ‘open things’, ‘search
furniture’, ‘attack enemies’, ‘unlock locks’. The third variant
used a set of counterproductive goals designed to thwart the

agent’s attempts to earn points. The counterproductive goals
were: ‘close things’, ‘drop stuff’, ‘eat penguins’, ‘murder
blueberries’. The fourth agent variant used no goals at all,
and instead reduced the number of verbs tried per noun using
a randomized method.

Results are shown in Figure 4. In eleven cases out of
twelve, the task-specific goals resulted in superior or identical
performance to the other goal schema. In five cases out of
twelve, the task-specific goals were clearly superior, and in one
case out of the twelve, the task-specific goals produced inferior
performance. While there is still clearly room for improvement
in these results, we consider them a strong indication that goal-
directed action selection (and not merely a reduction in the
number of nouns tried) contributes significantly to the agent’s
performance.

V. GENERAL APPLICATION

Encouraged by the performance of our algorithm in the
specific domain of text-based adventure games, we attempted
to apply our method to a more general problem. We conceived
of an ‘oracle’ that accepted a goal from a human user and
then, without any additional input, proposed a set of actions
conducive to that goal.

When given a relatively small, human-defined set of objects
to choose from, the system showed inklings of promise. For
example, given the goal ‘enter house’ and the object set
‘lantern’, ‘house’, ‘door’, ‘key’, ‘table’, ‘window’, ‘lantern’,
‘floor’, ‘boom’, ‘mop’, ‘stove’, ‘food’, ‘doorknob’, ‘sword’,
‘knife’, ‘battleaxe’, ‘soap’, the agent proposed the following
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Fig. 4. Agent performance as a function of goal quality. Average of 45 trials
of 2000 steps each. Red triangles indicate human-provided goals that were
specifically crafted for the problem domain. Green triangles indicate goals
that are generally applicable in text-based adventure games, but that are not
specifically targeted to the game being played. Blue crosses indicate goals
that were deliberately designed to thwart agent performance, and cyan stars
indicate performance when the action space was randomly reduced without
reference to any particular goal.

actions: ‘relocate house’, ‘reassemble doorknob’, ‘enter door’,
‘use key’, ‘utilize food’. Given the same object list and the
goal to ‘create peace’ the agent proposed: ‘utilize food’, ‘use
key’, ‘forsake sword’, ‘eviscerate knife’, ‘nominate mop’. Both
cases involved several ridiculous combinations, but also had
instances of impressive insight (e.g. ‘enter door’ and ‘forsake
sword’).

When we attempted to make the oracle more general,
however, by giving it a set of 1000 nouns to choose from,
the results became utterly nonsensical. For ‘enter house’, the
agent proposed ‘convene house’, ‘situate library’, ‘enter hall’,
‘climb door’, ‘unlock room’. Given the goal ‘create peace’ it
suggested: ‘govern peace’, ‘revert nomination’, ‘revert con-
sensus’, ‘transcend genre’, ‘revert template’. We conclude that
a generalized application of this method will require a vector
space model with stronger analogical properties. As several
interesting lines of research are exploring this possibility [6],
[28], we are hopeful that generalized applications of this
method will soon become feasible.

VI. FUTURE WORK

Future work in this area should focus first and foremost
on the development of vector space models with optimal
analogical properties. This could potentially be accomplished
by applying transformers [27] or other attention-based neural
network architectures to the specific task of learning vector
spaces that satisfy prespecified analogical criteria. It might also
be possible to apply a lightweight transformation to the hidden
activations of advanced language models like transformer-XL
[7] and GPT-2 [24] in order to regularize the distinctions
between the embedded representations of input texts.

A second area of exploration should include the application
of descriptive rather than imperative guidance scripts. When
humans teach each other how to achieve a task, they are more
likely to say things like ‘You’re going to need some batteries’
than they are to say ‘get batteries’. It seems logical that true
human-computer interaction will tend to reflect the former
rather than the latter behavior pattern, and future research in
this area should reflect that.

VII. CONCLUSION

This paper presents a method for imbuing agents with
high-level domain knowledge via human-generated guidance
phrases. We have shown that a sentence-level vector space
model can be used to prioritize possible actions in a text-based
domain. When equipped with goals that accurately reflect the
environment, our agent outperforms both random exploration
and affordance detection methods. When given faulty goals,
agent performance declines. When given task-specific goals
and constrained to select only its highest-ranked actions, agent
performance improves.

Although this method works well in our experimental
domain, we seek to make it more generally applicable. We
believe this can be accomplished by identifying or training a
vector space model that is uniquely optimized for our research
area. Such an embedding space could conceivably contain
structural representations of causation and temporal relations
as well as more general knowledge.
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