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Abstract—Recurrent neural networks are able to capture se-
mantic meaning within the geometry of the resultant embedding
space, but the impact of training corpus and training curriculum
on the structure of the learned representations remains poorly
understood. This paper sheds some light on the mystery by
comparing the performance of a simple recurrent model on three
training tasks and two strongly divergent training corpora. The
learned representations are compared on tasks including the
Semantic Textual Similarity Benchmark, the Stanford Natural
Language Inference Corpus, and Google’s Analogical Reasoning
Test Set. Results show that context-based training produces
the strongest semantic alignment within the embedding space,
with reconstruction loss as an interesting close second. Pairwise
comparisons of models trained on different corpora show that
the choice of corpus also has powerful effects on the learned
representations. Most importantly, we observe that the choice of
input corpus and training task are not unilaterally independent,
but instead interact with each other in interesting ways. This
motivates a cautionary position against training neural models
by simply throwing as many different training tasks as possible
into the mix. Instead, it may be wiser to carefully select only
tasks that are compatible with the chosen input corpus, and vice
versa.

Index Terms—natural language understanding, language mod-
eling, semantic embeddings

I. INTRODUCTION

Recent advances in language modeling rely on recurrent and
attention-based architectures that are able to respect temporal
ordering and learn high-quality representations that go beyond
simple averages of component words. The mechanisms by
which semantic information is reflected in the geometry of
the resultant embedding space, and in particular the impact of
various design choices such as training curriculum and training
corpus, are not yet well understood.

The objective of this paper is to determine the impact of
training corpus and training curriculum on the representations
learned by a minimal recurrent model. The decision to restrict
this study to a small model has two key advantages: (1) The
lightweight model trains quickly, thus allowing a wider variety
of experiments, (2) Because the representational power of the
model is limited, the native advantages of the various corpora
and training tasks are easier to identify. It is true that a more
complex model may be able to compensate for the inherent

challenges of a malformed task or poorly chosen training
corpus, but that does not mean it is not affected by them. The
impact may merely be more difficult to detect, manifesting as
delays in training time and subtle imperfections in the learned
representations. By forcing these limitations into the open with
a small model, we hope to identify patterns that will be of
value when training larger ones.

II. RELATED WORK

Neural models that learn representations of language can
be evaluated in multiple ways. One common method is to
evaluate the models based on their effectiveness as pre-trained
input features for downstream tasks. Bert [7], InferSent [5] and
Google’s Universal Sentence Encoder [4] were all evaluated
using this method. However, while this evaluation structure
can reveal how well a system is learning language data in a
general sense, it cannot tell us which aspects of language are
being encoded within the embedding space.

Because of this limitation, our work inclines in the di-
rection of Zhu et al. [12] and Conneau et al. [6] in that
we wish to explore which semantic properties are directly
encoded within the structure of the learned representations.
We therefore utilize a set of evaluation tasks that rely on
cosign similarities between embedded sentences as the primary
measure of semantic structure.

Our network architecture follows the example of Tong et
al. [11] in that the hidden activations of a recurrent unit are
averaged prior to passing through a fully connected layer,
but our architecture is much simpler and designed with the
intent of learning general purpose sentence representations
rather than learning conversational behavior. The averaged
hidden layers are also structurally similar to Iyyer et al.’s
Deep Averaging Network [8]. However, our model includes
a recurrent element which allows it to absorb contextual
information in sequential fashion.

III. METHODOLOGY

We use the term semantic absorption to describe the degree
to which a neural model is able to reflect generally accepted



Fig. 1. Our neural model. Input words are embedded using the FastText
weights [1], then fed in sequence into a Gated Recurrent Unit. Once all of
the input text has passed through the GRU, the intermediate hidden states of
the GRU are averaged and passed to a fully-connected layer.

semantic properties in the geometry of its learned representa-
tions.

To determine the impact of training corpus and curriculum
on semantic absorption, we trained several models alternately
on (a) a plain text version of Wikipedia or (b) the first half
of the Toronto Book Corpus [13]. These corpora are notably
different in composition and vocabulary, with Wikipedia hav-
ing a larger vocabulary and generally more complex sentences,
whereas the Book Corpus contains stronger temporal structure,
more examples of cause and effect, and a notable emphasis on
human emotion.

For each training corpus, we trained the model architecture
depicted in Figure 1 on three natural language tasks:

1) Reconstruction: In this task, the model was trained in
parallel with a simple recurrent word-level decoder. The
task of the model was to learn a representation which
contained enough information to reproduce the sentence
exactly. The task of the decoder was to reconstruct each
sentence given the learned representation. Loss for both
systems was defined as the mean-squared error between
the original sentence and the string of output words
produced by the decoder.

2) Context prediction: Reminiscent of the training task
first used by Skip-Thought vectors [9], a single input
sentence was encoded using the recurrent model and then
passed through two independent fully connected layers.
The first layer attempted to predict the embedded repre-
sentation of the previous sentence from the input corpus.
The second layer attempted to predict the representation
of the next sentence. Output representations from both
prediction tasks were passed through a shared decoder
architecture that decoded the predicted representations

into text. Mean-squared error between the predicted and
genuine sentences was again used as the network loss.

3) Word prediction: Given a single input word, the model
was required to predict the most likely neighbors of that
word. This training mechanism was inspired by the skip-
gram task used by Mikolov et al. [10], but in our im-
plementation the context window is bounded by the start
and end tokens of each input sentence. On each forward
pass, a randomly chosen window size of n ∈ {2,4,6} is
chosen. Although the task’s input value is a single word,
it is still passed through the entire network architecture
of Figure 1 to produce its embedded representation. The
embedding is then used as the input to a fully-connected
layer whose outputs contain log probabilities for each
word in the model’s vocabulary.

Our objective in choosing these training tasks was to de-
termine how training curriculum affects the type of semantic
information absorbed by the neural network. The decision to
use a small recurrent model was motivated by the ability to
train quickly across multiple training tasks and input corpora,
as well as by the desire to expose the inherent strengths and
weaknesses of each design choice. To further facilitate training
speed, only input sentences of fewer than fifty characters in
length were used.

IV. EXPERIMENTS

We evaluated semantic absorption by comparing model per-
formance on a variety of natural language tasks. The objective
of our experiments was not to outperform state-of-the-art
methods, but rather to understand the relative effectiveness
of each input corpus and training task at inducing semantic
properties within the learned embedding space. By design,
our evaluation metrics include both word-level and sentence-
level tasks. This is because effective sentence representations
must also be able to represent single words in semantically
meaningful ways. If they do not, then attempts to use the
representations to compare between phrases and single words
will fail.

A. NLP Benchmarks

As a first level of exploration, we studied the performance of
our trained models on standard natural language benchmarks
including the 2017 Semantic Textual Similarity (STS) Bench-
mark [3], the Stanford Natural Language Inference (SNLI)
Corpus [2], and the Google Analogy Test Set [10].

The Semantic Textual Similarity Benchmark contains pairs
of sentences (s1,s2) annotated with a human-generated sim-
ilarity score between 0 and 5 for each pair. We evaluated
our learned representations by using using cosign similarity
simcos(A,B) = AB

‖A‖‖B‖ between embedded sentence pairs to
calculate Pearson’s r and Spearman’s rho for each model.

The Stanford Natural Language Inference Corpus contains
sentence pairs (s1,s2) along with annotator labels for the
categories {‘entailment’,‘neutral’,‘contradiction’}. To enable
evaluation, we assigned numeric values of {0.0,0.5,1.0} to



each of the categories respectively, and then calculated Pear-
son’s r and Spearman’s rho based on cosign similarity between
embedded sentences. Dataset entries for which no category
majority existed were ignored.

The Google Analogy Test Set contains word tuples of the
form {A,B,C,D} representing the analogical reasoning query
“A is to B as C is to ?” . Given the first three words in the
series, the task of the algorithm is to calculate the unknown
value D via vector offsets within the embedding space

D = argmaxv∈V ′simcos(v, c+ b− a) (1)

where a, b and c are the embedded representations of A, B,
and C, respectively and V ′ = V −{A,B,C} is the vocabulary
of the neural model excluding the source words A, B, and C.

Experimental results are shown in Figure 2. We have also
included scores from state of the art embedding models, not
because our objective in this experiment is to outperform them
(our model is far too small and simple for that purpose) but
to provide a comparison between our experimental results and
the current highest achievements.

Analysis of the results reveals interesting patterns. For
example, training based on context produces far better STS
scores than training on either the reconstruction or word
prediction tasks. This pattern holds across both input corpora,
but note the curious behavior on the SNLI task: Context+Book
Corpus strongly outperforms all of our other variants on that
task, with scores exceeding even some of the state-of-the-art
models. One is led to wonder: what is it about the intersection
between context-based training and the structure of the Book
Corpus that enable these dependencies to be learned, when
all other design combinations fail to absorb that semantic
information?

Note also that it is not the case that the context-based train-
ing produces the highest performance in all categories. Google
Analogy results are highest when the Wikipedia Corpus is
paired with reconstruction loss. We can therefore conclude
that there is a complex interplay between input corpus and
training task. Choosing the optimal design configuration is far
more complicated than simply hailing any particular corpus or
training task as the superior choice.

B. Semantic Triplets

We next evaluate our learned representations on the triplets
dataset introduced zhu et al. [12]. The triplets dataset was
designed to measure distinct semantic properties of sentence
embeddings, with an emphasis on their respective geometries
rather than on their usefulness for downstream tasks. Each
evaluation is structured as set of sentence triplets, and a
triplet is solved correctly if the cosine similarity between
the embedded representations of the first two sentences is
greater than the similarity between the first and third sentences.
Subtasks fall into the following categories.

1) Argument sensitivity: Measures whether the representa-
tions encode a sentence and a passivized version of the
sentence into similar regions of the embedding space.

2) Fixed point re-ordering: The order of words in the
sentence is restructured in a way that garbles semantic
meaning. The representations are expected to place the
fixed point inversion farther from the original sentence
than a semantically similar sentence extracted from the
SICK dataset.

3) Negation detection: The word ‘not’ is inserted into a
sentence at a grammatically appropriate location. The
distance between the original sentence and a sentence
with one word swapped for a synonym is expected to be
less than the distance between the original sentence and
the not-negation.

4) Clause relatedness: An embedded clause is extracted
from within a sentence. The distance between the original
sentence and the extracted clause is expected to be less
than the distance between the original sentence and its
not-negation.

5) Negation variants: The distance between a sentence’s
not-negation and its quantifier-negation should be less
than the distance between the not-negation and the orig-
inal sentence.

Results are shown in Figure 3. Here, too, interesting patterns
rise to the forefront. The Wikipedia corpus again results in
higher average performance than models trained using Book
Corpus. The reconstruction task consistently produces the
best results in Fixed Point Reordering, regardless of training
corpus. But note the way performance on the Argument
Sensitivity task is highly sensitive to the intersection between
corpus and training task. When the Wikipedia corpus is used,
the word prediction training task has the highest performance.
When Book Corpus is used, the context task is most effective.

As in the previous subsection, we have included the per-
formance of several state-of-the-art neural embedding models
for comparison, but it is not our intent to pit our experimental
models against this gold standard. Rather, we are interested
in the ways that our selection of input corpus and training
task affect the geometric properties of the learned sentence
representations. Comparison with state-of-the-art models is
useful primarily to place our performance numbers within the
larger context of linguistic modeling.

V. ANALYSIS AND RECOMMENDATIONS FOR FUTURE
WORK

Our results reveal that there is a complex interplay between
training task and input corpus that powerfully affects the
geometries of the model’s learned sentence representations.
If we had to choose a “winner”, overall results would suggest
that Wikipedia is the best input corpus and the context training
task is generally the most effective curriculum choice, but
the internal dynamics of neural language models are not that
simple. It is the intersction of both design elements, and not
either in isolation, that determines the final outcome.

Although not covered in the current experiments, we are
convinced that this interplay also has a third component:
network architecture. Thus, there is no such thing as a “best”
input corpus or “most effective” training task. There is only



STS r STS rho SNLI r SNLI rho Google Analogy
State of the art
GPT-2 -0.052 0.092 -0.007 0.019 6.47%
InferSent 0.718 0.702 0.273 0.279 81.81%
Google use lite 0.751 0.737 0.366 0.367 52.12%
Skip-thought 0.214 0.296 0.046 0.108 50.86%
BERT 0.495 0.490 0.166 0.174 46.56%
FastText BoW 0.547 0.543 0.248 0.257 77.20%
Glove BoW 0.404 0.440 0.241 0.247 82.39%
Average 0.440 0.471 0.190 0.207 56.77%

RNN - Wikipedia Corpus
reconstruction 0.393 0.421 0.075 0.081 55.37%
context 0.401 0.460 0.043 0.071 52.49%
word prediction 0.087 0.232 0.054 0.079 47.81%
Average 0.294 0.371 0.057 0.077 51.89%

RNN - Book Corpus
reconstruction 0.212 0.289 0.007 0.014 42.16%
context 0.410 0.395 0.141 0.139 51.79%
word prediction 0.057 0.086 -0.012 -0.002 28.40%
Average 0.226 0.257 0.045 0.050 40.78%

Fig. 2. Model performance on the SemEval 2017 Semantic Textual Similarity Benchmark, the Stanford Natural Language Inference Corpus, and the Google
Analogy Test Set. The first two datasets were evaluated using Pearson’s r and Spearman’s rho (higher is better), the Google dataset was evaluated based on
response accuracy. The Wikipedia models have higher average scores than the Book Corpus models in every category, however the combination of the Book
Corpus with the context training task performs better than its Wikipedia counterpart on the SNLI task.

arg sen fixed point neg detect clause neg variants average
State of the art
GPT-2 25.11% 98.40% 61.19% 38.23% 64.97% 59.80%
InferSent 1.57% 70.35% 97.48% 48.50% 92.17% 65.54%
Google use lite 1.79% 75.80% 77.78% 2.48% 81.02% 50.83%
Skip-thought 4.48% 99.84% 61.48% 20.53% 18.40% 44.95%
BERT BoW 1.57% 95.85% 89.48% 6.02% 71.23% 56.97%
FastText BoW 0.45% 0.16% 37.93% 28.85% 2.54% 15.42%
Glove Bow 0.45% 0.0% 20.74% 22.48% 22.90% 13.68%
Average 5.06% 62.91% 63.73% 23.87% 50.46% 43.88%

RNN - Wikipedia Corpus
reconstruction 11.21% 90.22% 13.93% 7.26% 24.46% 30.95%
context 4.71% 95.19% 16.15% 3.89% 14.48% 29.07%
word prediction 26.68% 84.45% 51.70% 33.81% 39.73% 49.24%
Average 14.2% 89.95% 27.26% 14.99% 26.22% 36.42%

RNN - Book Corpus
reconstruction 6.5% 98.24% 17.33% 2.48% 24.07% 31.76%
context 24.89% 73.56% 24.25% 16.81% 13.11% 31.73%
word prediction 7.17% 82.85% 31.41% 11.33% 28.77% 34.36%
Average 14.18% 84.88% 24.33% 10.21% 21.98 32.62%

Fig. 3. Classification accuracy on the triplet task introduced by zhu et al, exploring five distinct semantic properties of the learned representations. On these
tasks as well, the models trained on Wikipedia have higher average accuracies than the ones trained on Book Corpus, and even outperform the state-of-the-art
averages in two categories. Note, however, the unusually high performance of reconstruction+Book Corpus on the the Fixed Point Reordering task. In some
areas, it seems, the combination of input corpus and training curriculum can have unexpectedly dramatic results.

the question of which training tasks are most compatible with
recurrent networks trained on Wikipedia, or with transformers
trained on Book Corpus, and so forth.

Future work in this area should expand these empirical
studies to include more network architectures. The effect of
using more than one training task or input corpus at a time
should also be examined. The prevailing current opinion when
training deep neural representations seems to be “more data is
always better”, and models are often trained on large corpora
aggregated from sources with many different kinds of text,
and with training curricula that combine context prediction,
natural language inference, masked word prediction, sentiment

classification, and many other tasks. We question whether
this is the most effective approach, and strongly suspect that
the mingling of multiple corpora or training tasks inhibits
the learning of effective representations by diluting and in
some cases muddling the training signals. A key indicator in
this regard is the performance of the state-of-the-art InferSent
model, which was trained on only a single task, and which nev-
ertheless outperforms all competing models in approximately
half of the evaluation tasks used (see Figures 2 and 3).

We theorize that there may be fundamental issues of
compatibility between specific pairs of training tasks, and
that some harmonize well with each other while others do



not. Extensive and carefully structured experimentation is
necessary to determine which training tasks are compatible
and which may be working at cross purposes. Similarly, further
investigation is required in order to determine whether training
corpora can be indiscriminately aggregated, or whether there is
a cost in terms of final model performance when text corpora
with different distributional properties are merged together
during training.

VI. CONCLUSION

This work has investigated the impact of design decisions
such as input corpus and training task on the final geometry
of the learned sentence representations of a simple recurrent
network. We discover that, while the Wikipedia corpus results
in better performance on average, it is the complex interplay
between the corpus and training task in combination that truly
produces excellence. As a result of our studies, we encourage
researchers to carefully consider these design choices, and to
experiment with the various elements in combination rather
than selecting corpus and training tasks independently of one
another. In particular, we have observed that the combination
of Book Corpus and a context-prediction task are particularly
effective at inducing semantically aligned representations, as
evidenced by the Semantic Textual Similarity Benchmark, and
that the combination of a Wikipedia corpus and a sentence
reconstruction task results in impressively high performance
on a fixed point reordering task.

Future extensions of this work should focus on the respon-
siveness of various network architectures to the choice of input
corpus and training task(s), with particular emphasis on the
sensitivity of transformers and convolutional networks to these
design decisions. We also encourage the principled examina-
tion of training tasks used in isolation versus in aggregate, and
of input corpora with greater or lesser degrees of variance in
syntactic structure, sentence length, and vocabulary.
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