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ABSTRACT
Many first-person shooters feature non-player characters (NPCs)
that work alongside the player. Interfacing with these NPCs can
add unnecessary complication to a game and steepen the learning
curve for new players. Recent improvements in automated voice
recognition and language representation have set the stage for more
immersivemethods of interfacingwith NPCs through player speech.
In this paper, we present several promising methods of classifying
user utterances to extract predefined commands from unstructured
speech. This framework facilitates a more flexible interface than
has been used in past speech-controlled games. We also show how
our methods effectively leverage small sets of example data to
outperform existing industrial utterance classification systems.
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1 INTRODUCTION
Many popular military-style video games feature a squad of AI-
controlled soldiers who fight alongside the main character. These
characters often have effective low-level behaviors but are unable
to consistently align their low-level behaviors with the situational
goals of the player. Even the best automated teammates can oc-
casionally be found blocking the player’s intended path, firing at
unimportant targets, failing to enter or exit vehicles at appropriate
times, or generally acting contrary to the player’s motives. This is
unsurprising, as there is no way for the game to know what the
player is thinking without some sort of player intervention, such as
interfacing through command and communication menus. If these
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communication interfaces have even a small amount of complexity,
they usually require an interruption to core gameplay that is at best
time-consuming and at worst a frustrating pain point.

A speech interface for controlling automated teammates seems
like an ideal way to give players control over other characters
without requiring them to pause gameplay and navigate through
menus. But how do we interpret player speech accurately enough
for a speech interface to be effective? And how do we do so without
requiring the player to memorize a list of valid commands?

Word and sentence embeddings generated by neural embedding
models introduce a promising tool well suited for this task. These
embeddings are high-dimensional vectors that allow us to perform
mathematical operations on unstructured language. For example,
we can compare the embeddings of two sentences to find a real-
value distance between them. More ambitiously, we can imagine
that there is an appropriate mapping from the unbounded range of
possible human inputs to the finite, predefined range of commands
that the automated agent knows how to interpret. We could use
this mapping to extract commands from player speech.

In this paper, we explore how we can leverage existing sentence
embedding tools to extract meaningful commands from unstruc-
tured player speech. Section 2 discusses the prior research that
makes our contributions possible. Sections 3 and 4 detail our meth-
ods and experimental results. Section 5 explains the implications of
what we observed and next steps in our research.

2 RELATEDWORK
Most researchers who work with language have seen the power of
neural language models. These models include word2vec [15] and
FastText [2], which are trained by having a neural network predict
the contexts of words or sub-words in text, and GLoVE [17], which
is trained on word-word co-occurrence statistics. The resulting
word embeddings facilitate commonsense reasoning via mathemat-
ical operations. For example, it is possible to identify capital cities
by adding a constant vector to the embedded representations of
corresponding countries [16] or to determine algorithmically which
behaviors are afforded by a specific object [7].

On the multi-word level, deep neural network structures such
as LSTMs, convolutions, and attention mechanisms can process
strings of words and produce a distributed representation of whole
sentences. In this paper, we use Facebook’s InferSent sentence
encoder [3] as the basis for our linguistic comparisons.

Even before these more recent language modelling algorithms,
researchers have found other ways to represent words as vectors
and use those representations to detect semantic similarity [6, 8].
This idea has been applied to compare arbitrary words and groups
of words [8] or to classify documents and utterances based on a
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fixed set of output classes [10–12, 18]. These latter classification
problems are similar to the problem we address here, except that
we make classifications based on only a handful (1-3) of example
utterances per class as opposed to the hundreds or thousands of
examples needed for even simple machine learning algorithms to
work well. In that sense our work is similar to the intent-routing
functionality of the Google Voice Assistant [9] and Amazon Alexa
[1] platforms, whose implementation details are proprietary.

The idea of using human voices to control video games is not
new. In 2011 Harada et al. presented the vocal joystick that used
vowel intonations to interpret user commands [13]. Video games
like Mass Effect 3 and gaming systems like Oculus Rift use speech
recognition to navigate menus or select predefined player actions,
and exclusively voice-controlled games like Mayday! Deep Space!
allow players to deliver a set of predefined commands via voice
[22]. Our work takes these innovations a step farther by replacing
concrete commands with unstructured, free-form player speech.

In that context, our work is perhaps most similar to the AIIDE
Playable Experience Traveler, which uses free-form utterances to
guide an interactive narrative [19]. However, Traveler uses only
word-level representations, whereas our work leverages the rep-
resentational power of pre-trained sentence embeddings. Another
similar project is Upside Lab’s StarCraft II voice interface [5], which
uses the Amazon Alexa platform to allow players to execute com-
mon game commands via verbal instructions rather than a key-
board and mouse. Our goal is to create a model that can fill Amazon
Alexa’s role in similar voice interfaces and provide more flexibility
for the player than is currently possible.

The task of classifying utterances according to predefined classes
is related to but distinct from the concepts of query understanding,
which uses a more open domain, and named-entity recognition,
which assumes that relevant entities are referenced explicitly.

3 METHODOLOGY
Our general strategy for interpreting user commands is to compare
each user utterance to a small domain of defined actions and deter-
mine which action was intended by the utterance. In order to make
these comparisons, we use the InferSent sentence embedding tool
[3] to represent all utterances as high-dimensional vectors.

We start by giving our model a list of possible actions that an
automated agent can take. Each action includes a verb phrase (such
as Follow, Attack, Protect, or Go to) and optionally an object or target
(such as vehicle, building, enemies, or allies). Targets are represented
by NULL in cases where an action needs no specific target, such as
when the verb is Flee. This structure of organizing commands into
verbs and objects does not cover every conceivable use case, but it
has a high amount of flexibility while retaining simplicity.

In addition to the list of possible actions, we give the model a
small list of example user utterances with labels of the verbs and
objects each utterance should map to. We refer to these example
cases as the model’s guidance data. This guidance data is similar to
the training data used in machine-learning models, except the set
is too small to facilitate any actual ‘training’.

Notably, we do not give our model any prior knowledge about
the likelihood of specific actions. In a production environment a
game engine would help our model make better decisions based on

game context. Those decisions would need to be made explicitly
on a game-by-game basis, which is why they are not included in
our experiments.

3.1 Experiment Setup
We use four evaluative test environments to compare strategies for
command extraction, each with its own domain of possible actions
and its own test and guidance data. The Warcraft test environment
(WC) was created from samples of NPC dialogue from the game
Warcraft III, as found on wowwiki.fandom.com [4]. The Handwrit-
ten 1 and Handwritten 2 test environments (H1, H2) were written
in our lab to represent common phrases that might be used while
playing a sci-fi combat game like Halo. The Call of Duty test envi-
ronment (CoD) was collected from human volunteers who were
shown screenshots from the game Call of Duty and asked what they
would say to get a teammate to accomplish a specified objective. The
first three test sets were primarily used to tune hyper-parameters
and develop methodologies while the fourth was primarily used
for method validation. More detailed descriptions of the test en-
vironments as well as all test and guidance data can be found at
https://github.com/bandrus5/immersive-gameplay/.

We evaluate our model by having it predict the verb phrase and
object intended by novel utterances. We score its accuracy on verbs
and objects separately, such that it earns 1 point by predicting either
the verb or object correctly or 2 points for predicting both correctly.
We calculate the accuracy score for each set of experiments as the
percentage of possible points earned by the model.

We run each set of experiments twice, using two pretrained
versions of InferSent [3] to generate embedded representations of
sentences. Version 1 was trained using the GloVe word embedding
space [17] and version 2 was trained using the FastText word em-
bedding space [2]. We used both versions not to see which one was
more effective for our task, but to help generalize our results and
find patterns that will hold true for any embedding tools used.

4 EXPERIMENTS
Our primary experiment is to compare the accuracy achieved by
four command extraction methods. Each method compares embed-
ded representations of sentences to predict which predefined action
is intended by a user’s utterance. We use the following extraction
methods, which are listed in increasing order of how directly they
rely on the test environment’s guidance data:

• Simple Distance: In this method, the embedded represen-
tation of the user’s utterance is compared to the embedded
representations of each possible action in the test environ-
ment’s domain. The action whose representation is closest
to the utterance’s representation determines both the verb
and the object predicted by our model.

• Translation: The Translation method selects verbs and ob-
jects independently by comparing the embedded representa-
tions of each utterance to the embedded representations of
each verb and then to the representations of each object. It
adds a guidance vector дv to each utterance before compar-
ing it to the set of possible verbs. дv represents the distance
in the embedding space between an arbitrary unstructured
utterance and the domain of verbs and is defined by the
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Figure 1: Translationmethod. On the left we calculate a guid-
ance vectorдv as the average distance between each example
utterance Ei j and its labelled verbCi . On the right we add дv
to the embedded representation of the user’s utterance (T )
before comparing the utterance to each verbCi . This process
is repeated for objects.

Figure 2: PC Distance method. On the left, unit length eigen-
vectors for the approximated first principle components
(PCCi ) are calculated based on example utterances (Ei j ) cor-
responding to each verb (Ci ). On the right, we compare the
embedded representation of the user’s utterance (T ) to each
eigenvector to determine the verb intended by the utterance.
This process is repeated for objects.

equation дv = 1
n
∑n
0 (vi − ui ), where ui comes from the set

of representations of the labeled example utterances and vi
comes from the set of representations of the associated verbs.
A similar guidance vector дo is calculated and applied for
objects. This process is visualized in Figure 1.

• PC Distance: This method starts with the embedded repre-
sentations of the set of example utterances corresponding to
each verb and each object. It approximates the first principle
component of each set of representations and calculates a
unit length eigenvector for that principle component. The
eigenvector is used as a summary of the example cases cor-
responding to each verb and object. The embedded repre-
sentation of the user’s utterance is compared to each of the
calculated eigenvectors and the shortest distances are used
to select the intended verb and object. This process is visual-
ized in Figure 2 and is related to a strategy first introduced
for facial recognition in [20].

• Nearest Neighbor: In this method, the embedded represen-
tation of the user’s utterance is compared to the represen-
tations of each hand-coded example utterance rather than
against the representations of the predefined actions directly.

Table 1: The percentage of verbs and objects that were cor-
rectly identified using each command extraction method in
each test environment. Accuracy scores are averaged over all
distance metrics and both versions of InferSent.

WC H1 H2 CoD Average
Random (Baseline) 20.8 12.0 14.4 16.7 16.0
Simple Distance 28.0 40.2 46.0 42.6 39.2
Translation 36.3 42.7 45.1 40.7 41.2
PC Distance 58.8 43.6 32.0 53.5 46.9
Nearest Neighbor 56.6 47.6 33.2 48.5 46.4

Table 2: The percentage of verbs and objects that were cor-
rectly identified using each distance metric in each test en-
vironment. Accuracy scores are averaged over all command
extraction methods and both versions of InferSent.

WC H1 H2 CoD Average
Cosine 47.6 50.8 42.1 49.5 47.5
Bray-Curtis 47.3 47.5 39.8 47.5 45.5
Canberra 40.3 35.5 36.6 43.7 39
Chebyshev 36.5 26.5 31.3 33.9 32.0
City Block 47.3 42.8 39.4 46.2 43.9
Correlation 47.6 55.0 43.3 51.3 49.3
Euclidean 48.0 46.5 40.9 46.3 45.4

The labelled verb and object of the closest example utterance
become the model’s predictions.

The performance of each command extraction method on each
test environment can be found in Table 1. Interestingly, there was
little variation in relative performance of extraction methods be-
tween InferSent versions. Conversely, there was a high amount of
variation in the performance of extraction methods between test
environments. One possible reason for this could be the varying
ratios between number of guidance data and number of possible
actions in each test environment, as some methods rely more on
the guidance data than others. Nearest Neighbor, Translation, and
PC Distance (which used guidance data) all performed better over-
all than Simple Distance (which did not use guidance data). This
suggests that even a minimal number of labeled examples can be
leveraged to boost accuracy for speech classification tasks.

Each command extraction method involves finding the distance
between two vector representations of text. Many distance metrics
exist for comparing vectors [14], so as a secondary experiment we
combine each extractionmethodwith each of the following distance
metrics as defined in SciPy’s scipy.spatial.distance library [21] and
compare their accuracy scores: [Cosine, Bray-Curtis, Canberra,
Chebyshev, City Block (Manhattan), Correlation, Euclidean].

Cosine distance has been the commonly used distance metric for
comparisons between representations of sentences [8, 12]. However,
we found Correlation as a distance metric to yield more accurate
results, as shown in Table 2. This was true for InferSent versions 1
and 2 and for three out of the four test environments.

The Google Voice Assistant [9] and Amazon Alexa [1] platforms
both provide a service called ‘intent routing’, which classifies user
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Table 3: Our model’s top accuracy on each test environ-
ment compared to the accuracy of the Google Voice Assis-
tant and Amazon Alexa platforms. In this experiment our
model used the most accurate extraction method and dis-
tance metric for each test environment rather than averag-
ing over many options as in Tables 1 and 2.

WC H1 H2 CoD
Google Voice Assistant 15.5 50.0 22.5 47.9
Amazon Alexa 36.7 28.0 28.4 42.8
Our model 66.8 62.0 52.6 59.9

commands by their intent and routes requests to applicable server
endpoints. This intent routing task is analogous to our command
extraction task, making their platforms a natural baseline for com-
parison. Their specific methodology is proprietary, which precludes
any direct comparisons to the strategies they use. Instead, we per-
formed an end-to-end test to compare classification accuracy. We
reconstructed our four test environments as individual Google Ac-
tions and Alexa Skills, providing each action and skill with the same
commands (framed as intents) and example utterances that were
given to our model. We then ran each test utterance through both
intent routing systems and scored their accuracy, again giving half
credit in cases when either the verb or object were correct and full
credit when both were. We provided our test cases as text rather
than speech to provide a fair comparison to our model and avoid
any speech recognition errors. We found that the best version of
our model on each environment outperformed the Google Voice
Assistant and Amazon Alexa platforms as shown in Table 3.

5 CONCLUSION
In this paper we have presented strategies for creating effective
speech interfaces for games. Our largest contribution in this paper
is the set of command extraction strategies we used to map from
the unbounded range of possible human inputs to a finite domain of
predefined game commands. We have shown that our methods out-
performed the Amazon Alexa and Google Voice Assistant platforms
on the classification task described. We have also demonstrated
that Correlation as a distance metric outperformed the standard
Cosine distance on our classification task. We believe that these
findings are significant steps towards production-ready interfaces
that will take advantage of unstructured speech to increase player
immersion and engagement in a wide range of games.

We deliberately did not give our model any prior knowledge of
the likelihood of each command. In a production environment, game
developers would likely get even better performance by letting
game context further inform the classification process.

Like all technologies, our command extraction methods should
be tested and improved in a fully integrated gameplay environment.
We are actively seeking collaborators to integrate our model into
full-fledged games for play testing.
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