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Abstract—Neural embedding models are often described as
having an ‘embedding layer’, or a set of network activations
that can be extracted from the model in order to obtain
word or sentence representations. In this paper, we show via a
modification of the well-known word2vec algorithm that relevant
semantic information is contained throughout the entirety of the
network, not just in the commonly-extracted hidden layer. This
extra information can be extracted by summing embeddings from
both the input and output weight matrices of a skip-gram model.
Word embeddings generated via this method exhibit strong
semantic structure, and are able to outperform traditionally
extracted word2vec embeddings in a number of analogy tasks.

I. INTRODUCTION

Word embeddings that encode accurate semantic meaning
are in demand in many areas of Natural Language Processing
(NLP, see section II). It is common practice to evaluate the
semantic quality of an embedding by subjecting it to a variety
of analogical reasoning tasks. These aim to evaluate whether
the vector representations of similar words are cosine-close
and how well semantic relationships are accurately encoded.

Many embedding algorithms learn two sets of embedding
vectors. These sets are pulled from two different layers of the
embedding network. Researchers often refer to one of these as
the embedding layer, or the set of network activations that are
extracted and used as the actual embedding vectors. This set of
activations is also referred to as the input weights or the “target
embeddings”. The embeddings learned in the other layer of the
network, called “output weights” or “context embeddings” are
typically discarded. (We refer to this practice as “standard”
throughout the paper.)

This approach is pragmatic in that it produces a concise,
low-dimensional representation that is easy to conceptualize,
but it may neglect useful information contained in the output
weights. A similar problem has been observed, for example, in
variational autoencoders; the decoder portion of the network
takes on the burden of learning the target task, rendering the
encoder’s latent variables nearly useless [1]. Similarly, relevant
semantic information is sometimes distributed throughout an
embedding network rather than solely in the embedding layer.

In this paper we show that additional semantic information
can be extracted from the word2vec skip-gram model intro-
duced and popularized by [2]. We use the sum of the target
and context embeddings as word vectors instead of the target

embeddings only. The resulting embeddings, which we term
word2vec-PLUS, have the same dimensionality as the target
embeddings from the standard word2vec embedding layer,
but they incorporate information from twice as many weight
matrices. This information allows them to perform favorably
on the SemEval 2013 and Google Analogy Test Set evaluation
tasks and the SAT analogy task introduced by [3].

II. BACKGROUND AND RELATED WORK

Vector space models, in which words or groups of words are
represented as n-dimensional vectors, have been an active area
of research since the 1960s [4]. Originally based on statistical
models and co-occurrance counts, they have played a critical
role in fields such as NLP and topic modeling.

A. Word and Sentence Embeddings

Recently, statistical models have been replaced by neural
embeddings trained from large raw corpora. Mikolov et. al’s
[2] skip-gram model is among the most popular of these neural
approaches. In this model, a matrix of input activations accepts
a one-hot vector representing a target vocabulary word. This
feeds into a single hidden layer, which, after multiplication
by a matrix of output activations, feeds into an output layer
representing the likelihood that each word in the vocabulary
will appear within a context window of the input word (See
Figure 1 (top)). Note that since matrix multiplication of the
one-hot vector simply extracts the target word’s corresponding
row from the input weight matrix, the likelihood value for any
pair of words is derived from the dot product between the
target word’s corresponding row in the input weight matrix
and the context word’s corresponding column in the output
weight matrix.

Word vectors trained using the word2vec model have been
shown to perform well at analogical reasoning tasks including
the Google Analogy Test Set [5], affordance detection [6], and
household item localization [7]. They have also proven useful
in semantic analysis of language drift over time [8].

Other popular neural embedding models include the unsu-
pervised log-bilinear model GloVe [9]; the FastText embed-
ding algorithm, which uses subword information to accelerate
training and account for out-of-vocabulary words [10]; and



BERT, a transformer-based model for learning contextualized
word embeddings [11].

It is desirable for single-word embedding vectors to have
strong semantic structure. Many of their uses, such as text
categorization [12] and clinical NLP in medical applications
[13], rely on the assumption that similar words will have vector
representations that are cosine-close.

Neural embedding models have also been developed to
encode multi-word inputs such as phrases, sentences, or doc-
uments. Some of the most well-known include InferSent [14],
Google’s universal sentence encoder [15], Sent2Vec [16], and
skip-thought vectors [17]. Although these multi-word models
are not the focus of our current work, they are susceptible to
the same weaknesses as their single-word counterparts, and
may benefit from the same solutions.

B. Previous Experiments Employing Context Embeddings

We are not the only researchers to investigate value of
the information contained in context embeddings. Gabor et
al. [18] use both target and context embeddings in a novel
distance metric for word pair similarities. Other researchers
have noted that words with proximate target vectors tend to
be similar in different ways from word pairs in which the
target vector of one is close to the context vector of the
other (see section VI). Melamud et al. [19] leveraged this
observation to improve automated lexical substitutions, and
Nalisnick et al. [20] leveraged the same observation to improve
document ranking with word embeddings. See also [12], a
follow-up project by the same authors with more experimental
results. Our work differs from the foregoing in that we use
the sum of target and context embeddings to improve the
semantic structure of the word embedding space itself, rather
than applying the insight to the evaluation and interpretation
of word vector proximity.

III. WORD REPRESENTATIONS VIA SUMMED TARGET AND
CONTEXT EMBEDDINGS

Our methodology for extracting word embeddings from a
trained skip-gram model relies on the addition of vectors from
each of the network’s weight matrices. We call this algorithm
word2vec-PLUS.

Traditionally, the input weights of Mikolov et al.’s skip-
gram architecture are extracted to create word2vec embed-
dings. Thus the ith target vector is precisely ith row of the
input weight matrix, where i is the vocabulary index of the
target word [21]. Our key observation and contribution is
that these input weights contain only part of the semantic
information associated with the context-prediction task. The
remainder of the information is located in the set of output
weights, which connect the hidden layer to a set of output
nodes that use Hierarchical SoftMax to generate a probability
distribution over possible context words. Because of reliance
on the Hierarchical Softmax on the output nodes and the
association of multiple words with each hidden node on each
forward pass (as opposed to only a single associated word
from the input weights), this information is not as semantically

Fig. 1. Top: Forward pass of the word2vec skip-gram model. Colored squares
indicate activation levels. In this example, the word ‘apple’ has been encoded
as a one-hot vector. The weights associated with this word determine the
values of the hidden layer, which in turn contribute to the probability values
in the output layer. Bottom: Extraction of word2vec-PLUS embeddings for the
word ‘cat’ from a pre-trained skip-gram model. Edges in the graph represent
weights, with input weights bolded in black to the left and output weights
bolded in green to the right.

well-structured as that contained in the input weights. Never-
theless it provides complimentary data that, when summed
with weights from the input layer, is able to produce word
embeddings with improved performance at semantic tasks.

A. Methodology

Our embedding extraction mechanism is shown in Figure
1 (bottom). The embeddings we use are from the sum of
the input weights and the transpose of the output weights.
A similar idea is employed by GloVe [9]. Formally, the
vector representation vec(i) of the ith vocabulary word can
be described as:

vec(i) = Win[i] +WT
out[i] (1)

Where Win represents the input weights, Wout represents
the output weights, and W [n] denotes the nth row of the
weight matrix W .

We also conducted tests on vectors produced by the output
weights only, as well as concatenations rather than sums of
the two sets of weights. The results we observed were under-
whelming compared to those of summed embeddings, and we
found the concatenation approach less desirable because it fails
to preserve embedding dimension. These ideas are discussed
further in section VI.

B. Training Corpora

We trained word2vec-PLUS embeddings on several corpora
to evaluate the effectiveness of our algorithmic contribution
across a variety of training sets. The corpora used are shown
in Table I. Often the training sets we used were combinations
of these corpora (via simple text concatenation).



Corpus Size Token
count

Scraped articles 59.0 GB 9.6B
Wikipedia text 16.7 GB 2.8B
Toronto Book Corpus 4.6 GB 984M
Gutenberg classic books 1.2 GB 82M
Classic books (small) 20.3 MB <1M

TABLE I
CORPORA USED TO TRAIN OUR EMBEDDING MODEL: A CORPUS OF

SCRAPED WEB ARTICLES [22], A CLEANED WIKIPEDIA TEXT CORPUS
[23], THE TORONTO BOOK CORPUS [24], A PRE-CONSTRUCTED CORPUS
OF CLASSIC BOOKS FROM PROJECT GUTENBERG [25], AND A SMALLER

CORPUS OF CLASSIC BOOKS FROM PROJECT GUTENBERG THAT WE
COLLECTED IN HOUSE. THROUGHOUT THE PAPER WE REFER TO THESE

CORPORA IN SHORTHAND AS “SCRAPED”, “WIKIPEDIA”, “BOOK”,
“GUTENBERG”, AND “CLASSIC”, RESPECTIVELY.

The corpus of scraped articles described in the caption of
Table I was collected via an open-source method intended to
clone the unreleased WebText dataset used to train OpenAI’s
GPT-2 [22] [26]. The Wikipedia corpus is the entirety of
Wikipedia in 2004 with capital letters replaced. The Toronto
Book Corpus is a collection of 11,038 books collected in a
study by the University of Toronto [24]. The corpus entitled
“Gutenberg classic books” is a set of 3,036 books from 142
different authors. See [25] for details about its collection
methods.

IV. EXPERIMENTS

We tested word2vec-PLUS embeddings on three semantic
evaluation tasks: The Google Analogy Test Set [27], SemEval
2013 [28], and the SAT Test Set [3]. Here we present our
results in the context of performance of three well known
single-word embedding algorithms: GloVe [9], FastText [10],
and BERT [11].

A. Google Analogy Test Set

The Google Analogy Test Set [27] is commonly used to
measure embedding quality. It was used to evaluate perfor-
mance of both GloVe and FastText algorithms in their original
publications [9] [10]. It contains 19,544 analogy questions
in 14 categories. Eight of the categories contain questions
about syntactic analogies, such as adjective-to-superlative (e.g.
fast:fastest :: small:?). The remaining six have questions about
semantic analogies, such as country-to-capital or antonym
relationships.

In general, the questions in the Google Analogy Test Set are
not cognitively complex. Any English-speaking human could
answer most of the questions without difficulty. Notably, its
questions are open-ended rather than multiple choice. In order
to answer a question via word embeddings, we must search
through all possible words in the embedding space and choose
the best one.

To solve the questions in the Google Analogy Test Set, we
apply the linear offset method. Given an analogy of the form
a:b::c:d, we use the formula d̂ = c + b − a and search the
embedding space for the solution s that maximizes cosine

Fig. 2. Performance of word2vec-
PLUS embeddings compared to stan-
dard word2vec extraction methods.
Values displayed are the proportion
of correctly answered test questions.
On all three training corpora explored
for this task, word2vec-PLUS em-
beddings outperform embeddings ex-
tracted using only the input weights
of the skip-gram model. For this par-
ticular task training on larger corpora
than those listed here resulted in pro-
hibitively large vocabulary sizes that
made a nearest neighbor search across
the entire vector space less effective.

Fig. 3. Performance of different em-
bedding algorithms on the Google
Analogy Test Set. Word2vec-PLUS
vectors were trained using a com-
bined corpus containing data form
Wikipedia, the Toronto Book Corpus,
and Classic books. Throughout our
study we used GloVe vectors trained
on a 6B-token corpus and FastText
trained on a 16B-token corpus, as
these sizes were comparable to the
size of corpora we used in word2vec-
based training. Throughout our exper-
iments we used zero-context BERT
embeddings for analogy tasks.

Fig. 4. Sample question from the SAT Dataset [29]. These questions are
semantically more complex than the Google Analogy Test Set. Human
performance on this task is generally around 55% [30].

similarity simcos(d̂, s) (the nearest vector neighbor to the
calculated result).

Results are shown in Figures 2 and 3, and suggest that
word2vec-PLUS embeddings encode significant semantic in-
formation. Not only do they outperform traditional word2vec
embeddings across a variety of training corpora, but they
are also able to exceed the performance of FastText vectors
and nearly match the performance of 300-dimensional GloVe
vectors. This is a significant result, noting that GloVe and
FastText vectors were trained and tuned for this same analogy
task. These results suggest that the usually discarded output
weights in the skip-gram model contain valuable information.

B. SAT test set

The SAT Test Set [3] contains a list of 374 analogy
questions used on the SAT. A sample SAT question is pictured
in Figure 4. These questions are purely semantic and test
an embedding space’s ability to detect subtler relationships
between less common words.

Note the questions are more cognitively difficult than the
Google questions. The average human score on SAT anal-
ogy questions is close to 55 percent [30]. Also note that



Fig. 5. Performance of word2vec-
PLUS vectors compared with the
standard word2vec embedding
vectors on SAT. Note that word2vec-
PLUS improves performance when
embeddings are trained on larger
albeit less informative text corpora
such as the corpus of scraped articles,
but it does not seem to help when
the embeddings are trained on more
informative albeit smaller texts.

Fig. 6. Performance of different
embedding algorithms on SAT anal-
ogy questions. The word2vec and
word2vec-PLUS scores here were
trained on the corpus of scraped ar-
ticles since it resembles the Com-
mon Crawl data used to train GloVe
[9] more closely than the other,
more specialized corpora we explored.
Note word2vec is particularly well-
equipped for this task, and employ-
ing word2vec-PLUS improves on that
score.

the questions are multiple-choice, so to answer them with
embeddings we only need compare the vector representations
of a few words. This makes the SAT test more difficult than
the Google test in that the questions require deeper semantic
knowledge but easier in that few options make the right choice
more likely. SAT results for the different training corpora and
embeddings schemes we observed are in Figures 5 and 6.

C. SemEval 2013

SemEval 2013 [28] is a collection of questions about
sentence similarities. 1,118 sentence pairs were collected and
given human-evaluated similarity scores via crowd-sourcing.
To solve the SemEval task using word embeddings, we add
the vectors of the words in each sentence and compare the
cosine similarity of the two sentence-vectors for each question.
The machine’s score is the correlation between the embedding-
produced cosine ratings and the human-produced ratings. This
indicates the extent to which the embedding model is able to
recognize sentence similarity in the same way that humans do.
We note that multi-word embedding models would be naturally
well-suited for this task. Our objective here is to analyze
the effectiveness of our single-word-level embedding model
at solving this complex semantic challenge. Accordingly, we
restricted our experimental comparisons to other single-word
embedding models. We assess the performance of word2vec-
PLUS vectors in this task in Figures 7 and 8.

D. Hyperparameters

We performed a coarse search of hyperparameters includ-
ing window size, embedding dimension, number of training
epochs, and minimum word count for adoption into the vocab-
ulary. We found that for our training corpora, a small window
size of 2 resulted in better-performing embedding vectors for
both standard word2vec and word2vec-PLUS embeddings. In
the word2vec skip-gram algorithm the window size hyperpa-
rameter is actually used as an upper bound for the functional

Fig. 7. Performance of word2vec-
PLUS vectors compared with stan-
dard word2vec on SemEval task.
The scores here are Pearson corre-
lation r values. Higher value cor-
responds to closer correlation with
human-provided responses. Note that
word2vec-PLUS embeddings consis-
tently outperform embeddings pro-
duced in the standard way.

Fig. 8. Performance of different
embedding algorithms on the
SemEval sentence similarity
questions. Scores for word2vec and
word2vec-PLUS are taken from
embeddings trained on the corpus of
scraped articles as in Figure 6.

Fig. 9. Performance of word2vec-PLUS embeddings from different training
corpora, with and without PC-removal. Note that PC-removal for word2vec-
PLUS embeddings improves performance in the Google Analogy task.

window size, which is a random integer. It is conceivable that
a lower bound made for more stability in the embedding space.

We also found in general that a lower minimum word
count will yield better performance on SAT and SemEval
benchmarks. In all of our reported results we used an em-
bedding dimension of 300 (the same used for standard GloVe
embeddings [9]) and trained for 3 epochs.

V. PRINCIPLE COMPONENT REMOVAL

Principle Component Removal (PC-removal) is an estab-
lished technique used when creating sentence representations
from single-word vectors [31]. We found that it is also
useful in a single-word context, particularly when normalizing
vectors comprised of summed weight slices (which may be
distributed differently). We then re-assign each word vector
v as v ← uuT v, where u is the first singular vector of
the embedding matrix. This results in a new set of word
embeddings from which commonly shared properties have
been removed. We found that removing the principle compo-
nent from embedding vectors using this process consistently
improved scores on the Google Analogy test. See Figure 9.

We also noticed that PC-removal resulted in a more dramatic
improvement on the Google Analogy Test Set than on other
evaluation tasks. This is perhaps because both the SAT test



and the SemEval test require deeper semantic knowledge
that could be removed with the principle component. It is
possible that PC-removal smooths noise that may detract
from the bare-bones structural task presented by the simpler
Google questions. It also appears that principle component
removal is most helpful for embeddings that were trained on
small corpora, suggesting that this might be an interesting
bootstrapping method for low-resource domains.

Although PC-removal does not consistently improve SAT
scores, it is sometimes beneficial. In fact the highest SAT
score of any of the embeddings we trained was achieved
by applying both word2vec-PLUS and principle component
removal processes on the large combined corpus Scraped
articles + Wikipedia + Toronto Book Corpus + Classic Books
Collection. (The score was .4679.)

VI. ANALYSIS OF TEST RESULTS

We analyze some of the possible underlying reasons why
word2vec-PLUS vectors may have more accurate word rela-
tionships in cosine distances and thus be better equipped for
analogy tasks and other NLP applications.

The cosine similarity metric proportional to the dot product.
Let aIN be the target embedding vector (from the input
weights) associated with word a, and let aOUT be its context
embedding vector (from the output weights). Then finding the
similarity between words a and b via cosine distance varies,
depending on whether our chosen embedding for a word is (1)
the target embedding only, (2) the context embedding only, (3)
the sum of the two, or (4) the concatenation of the two. The
different similarity metrics for these schema are summarized
below.

sim(a, b) ∝ aTINbIN (2)

sim(a, b) ∝ aTOUT bOUT (3)

sim(a, b) ∝ (aTIN + aTOUT )(bIN + bOUT ) =

aTINbIN + aTINbOUT + aTOUT bIN + aTOUT bOUT

(4)

sim(a, b) ∝ [aTIN , aTOUT ]

[
bIN
bOUT

]
= aTINbIN + aTOUT bOUT

(5)
As discussed briefly in Section 2, Nalisnick et al. [20]

found that the term aTINbIN is a measure of typical similarity
between words a and b. This means if similarity is high, a
and b are the same type of word and occur in similar contexts.
They also found that the terms aTINbOUT and aTOUT bIN are
measures of topical similarity between words a and b. This
means that if similarity is high, a and b are words of the
same topic and are likely to occur in contexts together. From
Nalisnick et al’s work, examples of words typically similar to
the word yale are harvard, nyu, and cornell, whereas words
topically similar to yale are faculty, alumni, and orientation.

This observation by Nalisnick et al. is mathematically
consistent with the way the skip-gram model is trained. The

network’s objective is to maximize the inner product aTINbOUT

when words a and b occur in the same context. (See section
II.) This ensures that the value will be high for topically
similar words. It also ensures theoretically that both aTINbIN
and aTOUT bOUT should be high for typically similar words;
vectors (both target and context) for words that occur in similar
contexts will become cosine-similar to the same set of vectors
and thereby become cosine-similar to each other.

Note that the terms indicating topical similarity are present
only when we use sum embeddings (like word2vec-PLUS).
This may be why word2vec-PLUS embeddings tend to have an
advantage in analogy tasks. Many analogy questions require an
ability to discern both typical similarity and topical similarity.
Consider the analogy mason:stone :: carpenter:wood from
Figure 4. The words mason and carpenter (as well as wood
and stone) are typically similar. The words mason and stone
(as well as carpenter and wood) are topically similar. In order
for an embedding space to predict that wood completes the
analogy, it must have a vector representation for wood that
is close to vstone + vcarpenter − vmason. More formally, the
value vTwood(vstone + vcarpenter − vmason) = vTwoodvstone +
vTwoodvcarpenter − vTwoodvmason must be high. Thus we see
the embedding space must be equipped to know that wood is
similar to both carpenter and stone.

An average of 54 different SAT tests for both summed
vectors and concatenated vectors are shown in Table II.

sum concatenate
.363 .349

TABLE II
AVERAGE SAT ACCURACY SCORES FOR BOTH SUMMED AND

CONCATENATED VECTORS, TRAINED ON 7 SMALL CORPORA WITH
VARYING HYPERPARAMETERS. BECAUSE CONCATENATED EMBEDDINGS
PERFORMED WORSE IN THESE INITIAL EXPERIMENTS, AND BECAUSE OF

THEIR UNDESIRABLY HIGH EMBEDDING DIMENSION, WE FOCUSED MORE
ON SUMMED EMBEDDINGS IN THIS WORK.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new methodology for
extracting semantic information from a trained skip-gram
model. Rather than extracting the input weights only, we sum
them with the model’s output weights corresponding to the
same vocabulary words. This process improves performance
across a variety of semantic analogy tasks.

A key aspect of this work is the empirical demonstration
that additional extricable information exists within the weights
and activation layers of the entire network, not just within the
commonly-extracted embedding layer. This research may be
expanded in a number of ways. The algorithmic adjustment we
applied to the skip-gram word2vec model may be applied to
other embedding algorithms such as FastText, GloVe, or other
representational neural networks. Further experimentation with
different ways to combine target and context embeddings
to produce word vectors may yield a more optimal result
than those presented here. Given the significant computational
resources required to train large language models, future work
in this area may focus on developing improved extraction



methods for more complex neural architectures, including
transformers and other multi-word embedding models.

Evaluation of the summed embeddings presented here in
multiple NLP tasks may yield further insight into their uses.
Like other researchers ( [32], [33]) who have suggested alter-
native quality metrics for word embeddings than performance
on analogy tests, we do not claim that embeddings that are
better at analogy tasks are necessarily better in all NLP
applications. Much like Batchkarov et al. [33], we see analogy
tasks as a useful tool to determine whether semantic word
relationships are accurately encoded into an embedding and
particularly whether cosine word relationships can be trusted.
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