
Text Classifications Learned from Language Model
Hidden Layers

Nathaniel Robinson
Dept. of Computer Science
Brigham Young University

Provo, UT, USA
nrobinson@byu.edu

Zachary Brown
Electrical and Computer Engineering

Duke University
Durham, NC, USA
zac.brown@duke.edu

Timothy Sitze
Dept. of Mathematics

Brigham Young University
Provo, UT, USA

texas.sitze@gmail.com

Nancy Fulda
Dept. of Computer Science
Brigham Young University

Provo, UT, USA
nfulda@cs.byu.edu

Abstract—Advancements in machine learning methods have
yielded powerful natural language generation models. However,
in general, these models have drawn concern for being both
uninterpretable and uncontrollable. Model interpretability and
control have become important topics of interest among re-
searchers. We explore a variety of machine learning methods to
classify the hidden states of language models. This classification
enables model interpretation at a deep semantic level and is a
necessary part of recently proposed model control methods. We
show further that the use of language model hidden layers as
text representations in classification tasks may be more reliable
in some applications than more standard text representations.

I. INTRODUCTION: PROBLEM STATEMENT & MOTIVATION

Progress in automated natural language processing has
accelerated in recent years. Yet despite the fact that recent
language generation methods attain almost human-level per-
formance on certain tasks, intelligent voice assistants are still
largely based on state-machine architectures. This is due in
part to the fact that end-to-end deep learning methods cannot
be explicitly controlled to say specific phrases and therefore
might output false or offensive statements. Because of this
lack of control, these deep learning models pose too great
a risk to most entities that wish to deploy public-facing
intelligent agents. Furthermore, current language models are
almost entirely uninterpretable and therefore difficult to test for
egregious failure cases and to debug in general. This makes
the problem of control difficult to approach.

In this paper, we present experiments on several classifica-
tion algorithms that are capable of interpreting semantic and
topical information encoded in the high-dimensional hidden-
layer activations of modern natural language models, specifi-
cally the GPT-2 pretrained neural network by OpenAI [1]. The
GPT-2 network is a powerful language model that was trained
to predict the next word in a given passage of text, but as a
neural network is susceptible to predicting - without warning
- insulting or harmful phrases as the most likely text to follow
a given input. We hope to approach a way to mitigate this
problem by classifying GPT-2 hidden representations as they
represent text.

Although the lack of explicit controls and interpretability
for deep learning algorithms poses a risk to entities seeking to
leverage them, the risks have not prevented some corporations
from experimenting with these algorithms. In some cases these

experiments have resulted in public-relations disasters, most
notably Microsoft’s insulting chat bot Tay [2]. Our goal is
to develop a classifier that is able to identify undesirable
content being produced by a given network by interfacing
with the network’s inner representations. Classifiers like this
are an integral part of algorithms that successfully control the
output of language models, such as Plug and Play Language
Models [3] and Neural Programming Interfaces [4]. (Notably,
the classifiers used in Neural Programming Interfaces also
classify the hidden layer activations of GPT-2.)

II. METHODOLOGY

The data sets we generated consist of activation tensors
pulled from the first and last layer of OpenAI’s GPT-2 model
[1], as implemented on the HuggingFace-Transformers GitHub
repository [5]). Our general process is detailed in Figure
1. Collection of all the data sets described in this paper
began with a set of labeled sentences Tin,j sorted into a
number of classes and labeled Lj . To generate a data set,
we reduced every sentence to fifteen tokens and passed it
through the GPT-2 fifteen times. From these fifteen iterations
we collected fifteen 15x1024 arrays from the GPT-2 first
layer and fifteen 14x1024 arrays from the GPT-2 final layer.
We then concatenated these thirty arrays into one 435x1024
Sj array associated with the original sentence Tin,j . A data
set Q therefore consists of a collection of data points, each
containing a sentence Tin,j , a label indicating the class of
the sentence Lj , and a 435x1024 array Sj pulled from GPT-
2 activation layers over successive forward passes. In some
applications (such as our random forest analysis) we replaced
the 435x1024 array with a 14x1024 array pulled from the final
layer of the GPT-2 after passing the corresponding sentence
through GPT-2 once without repetition.

A. Classification Algorithms

We considered a variety of methods for our classification
task. Originally we believed that dimension reduction tech-
niques would facilitate classification. However, Principal Com-
ponent Analysis (PCA), Non-negative Matrix Factorization
(NMF), Randomized Dimension Reduction (RDR) and K-
Means all proved to be too memory intensive and/or required
unreasonable assumptions about the data to be useful. Spectral



Fig. 1. Data collection process illustrated

Clustering relies on a single, memory intensive graphical rep-
resentation of the input data and due to time constraints did not
seem like a promising classification method. Though UMAP
has several documented shortcomings, it is efficient enough
from a computational memory perspective to apply to a small
data set and test whether GPT-2 activations can be reduced
to a human-interpretable representation for classification. We
found that t-SNE was less memory-hungry than methods like
PCA and could be applied in a similar way to UMAP.

We chose to focus primarily on Neural Network methods
because of their ability to process large data sets via mini-
batching and their robustness to different forms of input and
labels. We focused as well on Decision Tree methods because
their interpretable approach to classification could offer insight
into the inner workings of non-interpretable language models.
Though less interpretable than lone decision trees, we also
explored random forest classifiers because they train quickly
and usually obtain higher classification accuracy.

B. Indications of Structure in Hidden Layers

Preliminary analyses indicate classifiable semantic structure
in GPT-2 hidden layers. See Figures 2 and 3. For these
experiments we collected a large data set with phrases sorted
into 50 different categories (determined by a list of 50 common
words, one of which was present in each sentence).

III. EXPERIMENTS AND RESULTS

In order to interpret the development of offensive outputs
of language models, we trained a variety of classifiers on
a data set consisting of activations for offensive and non-
offensive sentences. Sentence labels were determined by hu-
man evaluation [6] [7]. Results are displayed in Table I. If
not specified, assume batch size for each neural network is 5.
Neural Networks were trained on the full set of 66,000 data
points. Random forests were trained on a smaller subset of
the data: 2,000 sentences, each corresponding to a 14x1024
array taken from the GPT-2 final layer after the sentence was
fed through the model once. (The size of the full data set was
computationally prohibitive in this application.) The featured
random forest was the best-performing from a hyperparameter
grid search. Accuracy was computed on a set of validation data
kept separate from training and test data (or from the out-of-
bag score in the case of random forests). The best-performing

Fig. 2. We applied many UMAP configurations to a small subset of the data
set to test whether UMAP could cluster data points with similar labels into
the same clusters. Though this method did not successfully sort GPT-2 array
inputs by their sentence classes, we noticed repeated structures in the clusters
(groups of the same arrays that were consistently clustered together across
many different parameter configurations).

Fig. 3. Training accuracy timeline for 200 epochs over a data set divided
into 15 files. The rapid oscillations of the Decision Tree and Random Forest
classifiers’ accuracies in this figure demonstrate their inability to generalize
across batched data. Though the tree-based methods failed to learn the
complex classification task, the neural network clearly learned. The random
forest was trained using 500 trees with a maximum depth of 50. The featured
neural network used seven linear layers with ReLU activations.

network was the original feed-forward architecture, classifying
activations derived from offensive or non-offensive sentences
with 91.6% accuracy.

It is worth noting that Davidson et al. [6], whose labeled
offensive speech data we used, accomplished comparably high
precision and recall in a similar classification task by ex-
tracting linguistic features from sentences. Though the current
work focuses on neural language representations, linguistic
feature extraction is a possible representation method to
achieve similar classification results.

Though the random forests did not learn the classification



Network type Notable parameters Acc.

Original feed-forward 3 dense layers, 112 neu-
rons, batch size 5

.9138

Original feed-forward with
larger batches

3 dense layers, 112 neu-
rons, batch size 20

.9155

Original feed-forward trained on
14x1024 arrays

3 dense layers, 112 neu-
rons, data shape 14x1024

.8959

Wider feed-forward 3 dense layers, 1792 neu-
rons

.9084

Shallower feed-forward 1 dense layer, 64 neurons .8822
Deeper feed-forward without skip
connections

7 dense layers, 1016 neu-
rons

.9029

Deeper feed-forward with skip
connections

13 dense layers, 1071 neu-
rons, residual connections

.9015

Convolutional neural network 9 layers, 7 batch norms .9008
Random Forest Max depth 4, max 122

features, data shape
14x1024

.8768

TABLE I
RESULTS FROM VARIOUS CLASSIFIERS. THE ARCHITECTURE REFERRED
TO AS ”ORIGINAL FEED-FORWARD” IS A SIMPLE NEURAL NETWORK OF

ONLY 3 DENSE LAYERS AND ONLY 112 NEURONS.

task as well as the neural networks, a feature importance anal-
ysis yields interesting results. We ran the two most important
features found by the random forest featured in Table I through
a Support Vector Machine. (See Figure 4.) The important
features learned by the Random Forest separate the input data
almost perfectly linearly.

Fig. 4. Feature comparison using a support vector machine.

A. Classification of Deep Semantic Meaning

We performed more experiments using a data set with
sentences sorted into two groups determined by the presence
or absence of the word “cat” (i.e. cat-sentences vs. non-
cat-sentences). This task was even easier for networks to

learn. A neural network using the same architecture as the
best model featured in Table I was able to attain 99.9%
accuracy on validation data for the cat-classification task.
On the surface, this may not seem incredibly impressive, as
classifying whether or not a sentence contains the word “cat”
can be accomplished by a simple regex search. But results
show that the deep representations of GPT-2 hidden layers
reveal encoded semantic information beyond the word level.
(See Table II) This has implications for model interpetability
and controlability, as it allows us to perceive when GPT-2 may
be “thinking” about cats, even if the word “cat” is absent.

Sentence Class Model
output

dogs and cats prefer to play together in packs with their
cubs

CAT 1.03

children prefer to play together in groups with their
toys

NO
CAT

.40

children prefer to play together in groups with their
cats

CAT 1.00

the film was set in the seventeenth century. A time of
war-torn

NO
CAT

-.07

the film was set in the seventeenth century. A time of
small and large cats everywhere

CAT .72

the very feline tiger purred and cleaned her tail and
whiskers for her cubs

CAT .96

the very human man groaned and cleaned his hair and
mustache for his kids

NO
CAT

.01

the very human man groaned and cleaned his hair and
mustache for his cats

CAT .99

she had feline habits and purred and meowed often CAT .97
the little furball meowed, grabbed her cub, and slinked
away

CAT .86

the little dude yawned, grabbed his friend, and skipped
away

NO
CAT

.12

TABLE II
“CAT” CLASSIFIER RESULTS. A MODEL OUTPUT OF 0 CORRESPONDS TO A

NOT-CAT CLASSIFICATION, AND A 1 CORRESPONDS TO A CAT
CLASSIFICATION. NOTE THAT CERTAIN OF THE SENTENCES, THOUGH

THEY DO NOT CONTAIN THE WORD CAT, ARE VERY FELINE IN NATURE
AND THAT THE MODEL EASILY PICKS UP ON THIS.

B. Language Model Hidden States as Semantic Representa-
tions

We ran further experiments to compare the success of
this classification task when using GPT-2 hidden layers as
sentence representations versus using a more standard and
widely used method for numerical sentence representation,
Google’s Universal Sentence Encoder (U.S.E.) [8]. As it turns
out, both neural network and random forest models, after
hyperparameter grid searches, were unable to classify the
sentence embedding vectors corresponding to sentences from
our offensive/non-offensive data set (while, as we discussed
earlier, the models learned the task very well when GPT-2
hidden layers were used). Perhaps the vector sentence repre-
sentations from U.S.E. do not contain enough fine-grained se-
mantic information for a model to parse whether a sentence is
offensive. It seems in this particular application the inner layers
of a large language model are far better text representations
than text embeddings themselves. This has implications to the
possible utility and preferability of language model parameters
as text representations in some applications.



See Table III for results. We ran a number of experiments
to compare performance of offensive-speech classifiers using
sentence embeddings from Universal Sentence Encoder and
GPT-2 hidden layer activations. The neural architectures repre-
sented are similar to those from Table I except that they use an
added Sigmoid activation function after the final neural layer
to ensure that outputs will be between 0 and 1. All experiments
used a batch size of 5, and each model architecture underwent
a grid search of parameters (learning rate for neural networks,
maximum depth and maximum features for random forests) to
find an optimal result. Note that using sentence embeddings
as semantic representations rendered it impossible for the
model to learn the task. Unlike random forests in our earlier
analyses, random forests in the grid search for this result were
trained with the entire offense/non-offense data set. (The low
dimensionality of U.S.E. embeddings allowed for use of the
larger data set.)

Representations
used

Network type Notable parame-
ters

Acc.

GPT-2
activations

Original feed-forward 3 dense layers,
112 neurons

.9117

U.S.E.
embeddings

Original feed-forward 3 dense layers,
112 neurons

.5000

U.S.E.
embeddings

Deeper feed-forward 6 dense layers,
504 neurons

.5000

U.S.E.
embeddings

Random Forest Max depth 3,
max features:
“auto”

.4401

TABLE III
COMPARISON OF PERFORMANCE ON CLASSIFICATION TASK USING U.S.E.

EMBEDDINGS AND HIDDEN LAYER REPRESENTATIONS FROM GPT-2

C. Choice of Layers

It is worth noting that although we analysed the first and last
layers of GPT-2 for the purposes of our classification, other
layers of the network may also be worth exploring. A feature
importance analysis on all extracted layers from the small
GPT-2 provides some insight into which layers may correlate
more or less with the input text. See Figure 5. In applications
where GPT-2 hidden layer activations may be used as text
representations, it may be worthwhile to consider multiple
combinations of extracted layers to find one that works best
for the application at hand.

IV. CONCLUSION

Classification of the inner layers of otherwise uninter-
pretable language models is a matter of importance for the
capabilites and uses of language models in the future. Clas-
sifiers that perform this task are an integral part of recently
developed methods for language model control [4] [3]. Based
on our experiments, it appears that simple, feed-forward neu-
ral networks without residual connections are adequate for
classifying hidden-layer activations of the GPT-2 pre-trained
language model. Neural models trained simply on sentences
labeled at the word level are able to glean semantic information
beyond the word level from GPT-2 deep hidden represen-
tations, allowing the prospect of model interpretability and

Fig. 5. Feature importance evaluation across GPT-2 layers. Feature impor-
tances were generated by a random forest trained to classify cat- and non-cat-
sentences using all 13 of the layers in the small GPT-2. In the graphs, blue
represents the importance levels of the features throughout each layer, while
the yellow lines are the average importance for each layer scaled by a set
constant. It seems that the final layer is the most responsive to input text and
thus likely the most valuable for classification purposes (at least with regards
to the cat-classification task).

insight into what the GPT-2 model is “thinking.” Furthermore,
empirical evidence shows that these deep representations from
GPT-2 hidden layers may in fact be useful as embeddings
themselves and may be preferable to traditional embeddings
in some applications.

V. ACKNOWLEDGEMENTS

We would like to acknowledge the contributions of Dr.
Emily Evans and the Applied Computational Mathematics
students at Brigham Young University for their contributions
to this work. We also acknowledge the contribution of Twitter
users and CrowdFlower workers who labeled many of the
sentences in our offensive and non-offensive text collection.

REFERENCES

[1] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language models are unsupervised multitask learners.
OpenAI Blog, 1(8):9, 2019.

[2] Gina Neff and Peter Nagy. Talking to bots: Symbiotic agency and the
case of tay. International Journal of Communication, 10:4915–4931, 10
2016.

[3] Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank,
Piero Molino, Jason Yosinski, and Rosanne Liu. Plug and play language
models: A simple approach to controlled text generation, 2019.

[4] Zachary Brown, Nathaniel Robinson, David Wingate, and Nancy Fulda.
Towards neural programming interfaces. In Advances in Neural Informa-
tion Processing Systems, volume 33, 2020.

[5] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan
Funtowicz, and Jamie Brew. Huggingface’s transformers: State-of-the-art
natural language processing. ArXiv, abs/1910.03771, 2019.

[6] Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber.
Automated hate speech detection and the problem of offensive language,
2017.

[7] Toxic comment classification challenge. Accessed: 2020-03-20.
[8] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limti-

aco, Rhomni St John, Noah Constant, Mario Guajardo-Cespedes, Steve
Yuan, Chris Tar, et al. Universal sentence encoder. arXiv preprint
arXiv:1803.11175, 2018.


