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Abstract: We present a transfer learning method inspired by modulatory neurotransmitter mech-
anisms in biological brains and explore applications for neuromorphic hardware. In this method,
the pre-trained weights of an artificial neural network are held constant and a new, similar task is
learned by manipulating the firing sensitivity of each neuron via a supplemental bias input. We refer
to this as neuromodulatory tuning (NT). We demonstrate empirically that neuromodulatory tuning
produces results comparable with traditional fine-tuning (TFT) methods in the domain of image
recognition in both feed-forward deep learning and spiking neural network architectures. In our tests,
NT reduced the number of parameters to be trained by four orders of magnitude as compared with
traditional fine-tuning methods. We further demonstrate that neuromodulatory tuning can be imple-
mented in analog hardware as a current source with a variable supply voltage. Our analog neuron
design implements the leaky integrate-and-fire model with three bi-directional binary-scaled current
sources comprising the synapse. Signals approximating modulatory neurotransmitter mechanisms
are applied via adjustable power domains associated with each synapse. We validate the feasibility
of the circuit design using high-fidelity simulation tools and propose an efficient implementation of
neuromodulatory tuning using integrated analog circuits that consume significantly less power than
digital hardware (GPU/CPU).

Keywords: power-constrained devices; low-power analog learning; neural network; spiking neural
network; neuromorphic; analog CMOS; life-long learning; machine learning; transfer learning;
fine-tuning

1. Introduction

Analog CMOS hardware has the potential to reduce energy consumption of deep
neural networks by orders of magnitude, but the in situ training of networks implemented
on such hardware is challenging. Once the chip has been programmed with the correct
weight values for a task, typically no further learning occurs. We introduce a biologically-
inspired knowledge transfer approach for neural networks that offers potential for in situ
learning on the physical chip. In our method, the weight matrices of a spiking neural
network [1–5] are initialized with values learned via offline (i.e., off-chip) methods, and
the system is exposed to an analogous—but distinct—learning task. The bias inputs of the
chip’s spiking neurons are manipulated such that the network’s outputs adapt to the new
learning task.

This approach has applications for autonomous, power-constrained devices that must
adapt to unanticipated circumstances, including vision and navigation in unmanned aerial
vehicles (UAVs) deployed into unpredictable environments; fine-grained haptic controls
for robotic manipulators; dynamically adaptive prosthetic devices; and bio-cybernetic
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interfaces. In these real-world domains, the system must deploy with initial knowledge
relevant to its target environment, then adapt to near-optimal behavior given minimal
training examples, a feat beyond the capability of current learning algorithms or hardware
platforms. Neuromodulatory tuning offers a path toward implementing such abilities on
physical CMOS chips. The key contributions of our work are as follows:
1. We introduce a novel transfer learning variant, called neuromodulatory tuning, that

is able to match the performance of traditional fine-tuning approaches with orders of
magnitude fewer weight updates. This lends itself naturally to easier, lower power
implementation on physical chips, especially because the proposed CMOS implemen-
tation of our the fine-tuning method does not involve writing to memory hardware.

2. We provide a biologically-inspired motivation for this tuning method based on recent
findings in neuroscience, and discuss additional insights gleaned from modulatory
neurotransmitter behaviors in biological brains that may prove valuable for neuro-
morphic computing hardware.

3. We demonstrate in both traditional (non-analog) feed-forward architectures and spik-
ing neural network simulations that neuromodulatory tuning methods are able to
approach or exceed the performance of traditional fine-tuning methods on a number
of transfer learning tasks in the domain of image recognition, while overall task perfor-
mance must still be improved, the trends and potential of the method are encouraging.

4. We outline the mechanisms by which neuromodulatory tuning can feasibly be imple-
mented on CMOS hardware. We present an analog spiking neuron with neuromodu-
latory tuning capabilities. Post-layout simulations demonstrate energy/spike rates as
low as 1.08 pJ.
The remainder of this paper adheres to the following structure: We begin by providing

a general background on transfer learning, artificial neural networks, and neuromorphic
hardware in Section 2. We then outline the motivating principles and neurobiological
foundations of the current work (Section 3.1) and present our biologically inspired tuning
method (Section 3.2). A preliminary analysis follows (Section 4), showing performance
comparisons of NT versus TFT in digital computation environments across a variety of
learning rates and transfer tasks. Lastly, we present our spiking neuron design (Section 5)
with confirming evidence that our neuromodulatory tuning method can be used as an
acceptable proxy for traditional fine-tuning in analog CMOS environments (Section 6).
Conclusions are presented in Section 7.

2. Background

The current study lies at the intersection of three prodigious research fields: Transfer
learning (Section 2.1), spiking neural networks (Section 2.2), and neuromorphic computing
(Section 2.3). We outline key principles of each below. Our method also draws heavily on
recent discoveries in neuroscience, documented alongside the motivating principles of this
research in Section 3.1.

2.1. Transfer Learning

Transfer learning allows a network trained for one task to learn a new, similar task with
less computational complexity than fully retraining the network. The field includes a broad
range of techniques ranging from weighting, importance sampling, and domain adaptation
in unsupervised contexts [6–11], to fine-tuning and multi-task learning in supervised
settings [12–18]. Recent work in few-shot, one-shot, and zero-shot learning also contributes
to this line of research [19–22].

Our approach can be combined with many of these methods, but is most closely
related to feature learning from unsupervised data [13], whereby trained parameters from
a related task are used to jump-start the learning process. Our method is distinct in that
the activation sensitivity of individual neurons, rather than the strengths of their synaptic
connections, are modified. In some sense, this can be viewed as a degenerate form of neural
programming interface [23], in that activation patterns are modulated during each forward
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pass of the network; however, our method adjusts firing sensitivities via supplemental bias
inputs rather than by overwriting output signals directly. Our work also has tangential
relations to activation function learning [24], although we adjust firing sensitivity only,
rather than changing the shape of the activation curve.

Parallel to our work, ref. [25] presented BitFit, which shows bias tuning is an effective
sparse fine-tuning method that is competitive with traditional fine-tuning on Transformer-
based Masked Language Models. Our work augments and expands upon the insights
from this work in two key ways: We apply a bias tuning methodology much like [25] to a
convolutional neural network in the domain of computer vision, where we discover that it
is not able to match the performance of a traditional fine-tuning method, and we present a
novel approach to bias tuning (neuromodulatory tuning) based on multiplicative rather
than summative layer modifications, and demonstrate that this method is able to match
traditional fine-tuning approaches.

2.2. Spiking Neural Networks

Spiking neural networks (SNNs) [1,3,4,26–28] are artificial neural networks that at-
tempt to mimic temporal and synaptic behaviors of biological brains. Rather than using
continuous activation functions, spiking neurons utilize a series of binary pulses, called a
spike train [29], to propagate information forward in a brain-like manner. SNNs are partic-
ularly well-suited to implementation on analog/mixed-signal hardware, which naturally
supports the high parallel sparse activation pathways common in such networks [30].

Despite these potential advantages and their strong parallels with biological brain
behavior, SNNs have not gained as much recent prominence as traditional (digital) feed-
forward networks, in part because of the difficulty of propagating gradient information
backwards through a spike train [31]. One means to compensate for this is by training a
traditional (non-spiking) network using back-propagation and then applying a transfer
function to convert the learned weights into their SNN equivalents [32]. We leverage this
idea in our work, but instead of applying a transfer function, we copy the non-spiking
weights directly, then use neuromodulatory tuning to adapt them to a new learning task.

Recent works detailing the conversion of traditional feed-forward networks to SNNs
use algorithms which modify weights, biases and activation thresholds of the network to
create a SNN from a feed-forward network [33,34]. The difference between our work and
others is that we do not train the network to match the behavior with existing feed-forward
network. Instead, we seek to train network for different tasks. Therefore, we do not perform
layer-wise comparison which is resource consuming. Moreover, our work tunes a single
parameter per neuron which is far more implementable on physical chips compared to
other more computationally expensive methods.

2.3. Neuromorphic Hardware

Neuromorphic hardware uses dedicated processing units to implement neuronal
connections and firing behavior directly on a physical chip, rather than simulating them
mathematically. Analog neuromorphic hardware has been shown to be more power
efficient than traditional digital computation hardware, and does not suffer from the
same bottleneck as Von Neuman computing [35–42]. Some designs take advantage of
sub-threshold operation for ultra-low power neurons [43,44]. Further power reductions
have been achieved through sparse temporal coding [30].

The temporal nature of spiking neural networks naturally lends itself to on-chip,
biologically plausible learning methods. Spike-time-dependent plasticity (STDP) uses
analog hardware to directly implement learning rules on chip. Several works have shown
impressive learning accuracies using this method [29,35,45–47]. However, direct hardware
implementations for learning rules consume large amounts of space and power, limiting its
potential learning capacity. Our work bridges this gap by offering the possibility of on-chip
learning with similar performance but reduced space and component requirements.
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3. Neuromodulatory Tuning

Neuromodulatory tuning is a novel fine-tuning method based on recent discoveries
in neuroscience. Neuronal transmission in biological brains is highly complex in timing
and can occur either via rapidly terminating signals that influence only immediately
connected cells (synaptic transmission), or via chemical signals that spread further away to
simultaneously influence larger groups of neurons (volumetric transmission) [48,49]. Our
work is motivated by and takes inspiration from this non-synaptic transmission method.
Specifically, we observe that, rather than adjusting connection strengths between neurons
directly, modulatory neurotransmitters impact system behavior by affecting the activation
threshold of each neuron. Thus, a single trainable parameter, implemented in our case as a
supplementary input, can be used in lieu of the large suite of trainable parameters typically
employed during a fine-tuning process.

3.1. Biological Foundations

Modulatory neurotransmitters in biological brains use metabotropic g-protein coupled
receptors as opposed to strictly ion conducting receptors propagate signals, and can include
neurotransmitters such as the cathecholamines dopamine and norepinephrine [50–54].
Interestingly, glutamate is also used by neurons as a modulatory metabotropic signal,
though it is largely discussed in the context of ion channel activity [55].

Artificial neural networks principally use neuronal ion channel activity, as repre-
sented by classical synapses, to represent synaptic strength. In contrast, metabotropic
neuromodulators activate g-protein coupled receptors in neurons, whose downstream
effectors can be stimulatory or inhibitory (depending on predefined cellular components)
and work through a series of effectors that can amplify signals from traditional synaptic
inputs, resulting in multiplicative tuning of the neuron’s inputs. This is considered a tuning
process since these neurotransmitters often do not directly change the membrane potential,
but instead change the activation threshold by modulating the channels receiving inputs.
Our neuromodulatory tuning method simulates this increase or decrease in sensitivity by
including additional inputs to the incoming signal, as shown in Section 5. In other words,
neuromodulatory tuning increases a model’s sensitivity to specific pre-learned features,
rather than changing the functions represented by those features. To our knowledge, this is
the first application of volumetric, as opposed to strictly synaptic, mesolimbic attention
modalities within an analog CMOS system.

3.2. Implementation

We simulate increased or decreased resting cell voltage via the introduction of a
supplementary bias neuron for each network layer to be fine-tuned, as shown in Figure 1.
The weights connecting this bias to neurons within each layer are initialized according to a
random uniform distribution, and, if the number of output categories has changed from the
original task, a new output layer is appended to the model. These additional bias weights
are multiplied to the pre-trained weights in each layer of a network selected for fine tuning.
The additional bias weights are then adjusted using standard back-propagation methods
while all original weights from the pre-trained model are held fixed. This multiplicative
bias method outperformed traditional additive bias, presented by [25], in experiments
shown Table 1.

Alternately, neuromodulatory tuning can also be implemented by unfreezing only
the existing bias weights of the pre-trained model, leaving all other weights fixed. We
denote the additional bias neuron implementation as NT1, and denote this unfreezing bias
weights implementation as NT2. Although the representational capacity of both methods is
equivalent from a theoretical standpoint, we find that, empirically, introducing additional
bias neurons (NT1) functions slightly better in deep feed-forward networks as shown in
Table 2. Consequently, we use NT1 in our experiments with feed-forward networks in
Section 4. In spiking networks, we compare both implementations (NT1 and NT2) and
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we find NT1 performs better on STL-10 dataset, but has similar performance with NT2 on
Food-11 and BCCD as shown in our experiments with spiking networks in Section 6.1.

Figure 1. Depiction of neuromodulatory tuning (NT) in contrast with traditional fine-tuning (TFT).
In NT, the weights of the pre-trained network are frozen, preserving all learned feature information
pertaining to the original training task. A set of auxiliary bias neurons with randomly initialized
weights is then inserted into the network, and the auxiliary bias weights are then updated in response
to the new learning task. In this diagram, color indicates the weights’ update status: red for active,
blue for frozen. NT requires far fewer parameter updates than traditional fine-tuning methods,
although loss information must still be propagated backward through the entire network.

Table 1. Validation accuracy on STL-10, Food-11, and BCCD datasets after 5 epochs, mean of five
training runs using learning rate (lr) = {0.01} and and using the full training set for each dataset after
being balanced.

STL-10 acc Food-11 acc BCCD acc

additive bias tuning 0.1000 0.0863 0.2498
multiplicative neuromodulatory tuning 0.8447 0.7110 0.3966

Table 2. Validation accuracy on the STL-10, Food-11, and BCCD dataset after 10 epochs, mean of
five training runs using learning rate (lr) = {0.1, 0.01, 0.001, 0.0001} and using the full training set for
each dataset after being balanced. NT1 = additional bias implementation, NT2 = modify existing bias
implementation. Highest average accuracies are bolded.

STL-10 acc Food-11 acc BCCD acc

NT1 (lr = 0.1) 0.8237 0.6819 0.3864
NT2 (lr = 0.1) 0.7626 0.5309 0.3280
NT1 (lr = 0.01) 0.8491 0.7184 0.4126
NT2 (lr = 0.01) 0.8420 0.7030 0.3800
NT1 (lr = 0.001) 0.8429 0.6929 0.3986
NT2 (lr = 0.001) 0.8517 0.7173 0.4234
NT1 (lr = 0.0001) 0.7856 0.5946 0.3939
NT2 (lr = 0.0001) 0.8333 0.6631 0.4008

NT1—average 0.8253 0.6720 0.3979
NT2—average 0.8224 0.6536 0.3831

4. Modeling and Analysis

We first probe the capabilities and weaknesses of neuromodulatory tuning (NT) in a
traditional deep learning setting. Using a pre-trained VGG-19 network architecture, we fine-
tune the model on three image recognition tasks. VGG-19 was trained on ImageNet [56], an
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image classification dataset composed of 1000 different image categories. The first dataset
we use in our evaluation is STL-10, a subset of ImageNet with only 10 image categories [57].
We expect traditional fine-tuning (TFT) and neuromodulatory tuning (NT) to achieve high
accuracies on STL-10 since the data is a subset of the original training data. Next, we
evaluate neuromodulatory tuning on a more difficult food classification task, Food-11 [58],
which contains images of 11 different types of food none of which match any of ImageNet’s
classes. Finally, we examine the capability of neuromodulatory tuning to learn blood cell
classification (BCCD) [59], which is a task very distinct from ImageNet containing 4 classes
of blood cells images. We hypothesize that as the difficulty of the tasks increase, NT will be
less effective in tuning the model to solve the given task, but still comparable to TFT.

For simplicity, fine tuning is applied only to the VGG-19 classifier layers, a process
which lowers the fine-tuned classification accuracy but facilitates our comparisons to
spiking neural network implementations in Section 5.1. Additionally, it is common practice
to only fine tune select layers of VGG models in recent literature [60,61]. We then apply
neuromodulatory tuning to the same layers that were fine-tuned (i.e., classification layers
only) and compare the performance of traditional fine tuning (TFT) to neuromodulatory
tuning (NT), as shown in Table 3.

To visualize the comparison between neuromodulatory tuning (NT) and traditional
fine-tuning (TFT), we create two model architectures, one with hyper-parameters config-
ured for NT and the other for TFT. We use the existing train and validation partitions in
the STL-10, Food-11 and BCCD datasets to train and evaluate the classifier layers of the
pre-trained VGG-19 model. We resize the data in each of the datasets to be images of size
256 × 256 to be compatible with VGG-19. Using an NVIDIA GeForce RTX 2080 Ti GPU, we
fine-tune both models for 10 epochs, with various training set sizes and learning rates.

We set the batch size to 64 training instances in all experiments with neural networks.
The effect of batch size on model performance has been studied in depth in recent literature.
Kandel and Castelli [62] study the effect of varying batch size and learning rate on VGG-16,
and also provide a literature review which details several papers concerning the properties
of training batch sizes. From these sources, it is clear that batch size and learning rates
are dependent, but the measure of dependence often differs depending on the given task,
model, and optimizer. Thus, we run a quick experimental analysis of the effect of batch size
for a given learning rate on VGG-19 and the Food-11 dataset in Table 4. The learning rate
for NT is set to be 0.01 and it is set to 0.0001 for TFT, since these learning rates performed
well in preliminary results. As evident from the results in Table 4, we see that batch size
does not effect the validation accuracy of NT or TFT models significantly. Therefore, we
can fix batch size to 64 in the remainder of our experiments with varying learning rates.

To perform gradient descent we use Cross Entropy Loss and the Adam optimizer.
After tuning, we iterate through the entire predefined validation set to find the mean loss
and accuracy for a specific model (NT or TFT) and learning rate.

Our results show that algorithm performance between traditional fine-tuning (TFT)
and neuromodulatory tuning (NT) is largely on par, a result that remains consistent across
a wide variety of learning rates. Table 3 provide our experimental data that highlights
the best-performing learning rates for NT (lr = 0.01) and TFT (lr = 0.0001). Interestingly,
the optimal learning rate for each tuning algorithm differs, and the average performance
of NT across multiple learning rates is higher than that of TFT. TFT achieves the highest
validation accuracies overall, but critically, not by much. This is important because it
means we can retain much of TFT’s learning accuracy while using four orders of magnitude
fewer trainable parameters, a circumstance that makes NT far more feasible than TFT to
implement on neuromorphic hardware.

Recognizing our success in the results presented above, we further reduced the number
of tunable parameters. The reduction in parameters was biologically motivated such that
each tunable parameter matches to a single neuron in the classifier layers of VGG-19.
Specifically, our initial results as reported in Table 3 include a set of tunable parameters
applied after the VGG-19 convolutional layers but before the data was passed into the
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VGG-19 classifier. Table 5 shows the same experiment repeated with this additional layer
of parameters removed, resulting in an even smaller number of trainable parameters—a
critical factor for potential implementation of such methods within the space constraints
of physical analog chips. We found that this reduction in parameters did decrease the
accuracy of the network on each task, but only slightly. As this reduced parameter count is
more analogous to biological neuromodulatory transmitters, we use this NT configuration
in future experiments in Section 5.1.

Table 3. Validation accuracy on the STL-10, Food-11, and BCCD datasets after 10 epochs, mean of five
training runs using learning rate (lr) = {0.1, 0.01, 0.001, 0.0001, 0.00001} and using the full training
set for each dataset after being balanced. Highest average accuracies and highest best-performing
accuracies are bolded.

STL-10 acc (n = 500) Food-11 acc (n = 280) BCCD acc (n = 2400)

NT1 (lr = 0.1) 0.8237 0.6819 0.3864
TFT (lr = 0.1) 0.1031 0.0876 0.2487
NT1 (lr = 0.01) 0.8491 0.7184 0.4126
TFT (lr = 0.01) 0.1540 0.0987 0.2496
NT1 (lr = 0.001) 0.8429 0.6929 0.3986
TFT (lr = 0.001) 0.8617 0.7184 0.2509
NT1 (lr = 0.0001) 0.7856 0.5946 0.3939
TFT (lr = 0.0001) 0.8836 0.8060 0.4291
NT1 (lr = 0.00001) 0.4969 0.2218 0.3484
TFT (lr = 0.00001) 0.8724 0.7387 0.4209

NT1—average 0.7596 0.5819 0.3880
TFT—average 0.5750 0.4899 0.3198

NT1—best 0.8491 0.7184 0.4126
TFT—best 0.8836 0.8060 0.4291

NT1—tuned parameters 43,290 44,291 37,284
TFT—tuned parameters 123,652,866 123,653,867 123,646,860

Table 4. Validation accuracy on the Food-11 dataset after 10 epochs, mean of ten training runs using
bath sizes (bs) = {16, 32, 64, 128}, and using the full training set for the Food-11 dataset after being
balanced. The batch size 128 is too large for the TFT setup and is thus omitted. The best learning
rates for TFT and NT1 methods were determined from preliminary results.

acc (bs = 16) acc (bs = 32) acc (bs = 64) acc (bs = 128)

NT1 (lr = 0.01) 0.6924 0.6861 0.6933 0.7162
TFT (lr = 0.0001) 0.7900 0.8068 0.8118 -

Table 5. A repeat of the experiments sin Table 3, but with a large subset of neuromodulatory inputs
removed. Validation accuracy on the STL-10, Food-11, and BCCD datasets after 10 epochs, mean
of five training runs using learning rate (lr) = {0.01, 0.0001} and using the full training set for each
dataset after being balanced. The best learning rates for TFT and NT1 methods were determined
from results in Table 3.

STL-10 acc (n = 500) Food-11 acc (n = 280) BCCD acc (n = 2400)

NT1 (lr = 0.01) 0.8213 0.7056 0.3680
TFT (lr = 0.0001) 0.8836 0.8060 0.4291

NT1—tuned parameters 18,202 19,203 12,196
TFT—tuned parameters 123,652,866 123,653,867 123,646,860
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5. Methods
5.1. Neuromodulatory Tuning on Spike Neural Networks

The VGG-19 architecture is complex and difficult to implement in its entirety on a SNN
architecture, in particular due to the large number of convolution and max pooling layers.
Since our research goal is to explore the learning effect of neuromodulatory signalling on
brain-like architecture, and not to replicate VGG-19, we apply the following simplification
in our experiments: The feature layers of VGG-19 are retained in their original (digital) deep
format. As illustrated in Figure 2, image inputs are passed through these layers to attain a
feature embedding, which would normally be passed through to the VGG-19 classification
layers. We replace the VGG-19 classification layers with a spiking neural network having
the same number of layers and layer width. The weight matrices of these SNN-VGG
classification layers are initialized to the same values as the pre-trained VGG-19 weights.

Figure 2. Representation of the Spiking Neural Network (SNN) experimental setup. In these
experiments we construct a SNN that mimics the function and purpose of the traditional pretrained
VGG-19 classifier layers. To accomplish this, we pass data from a dataset d, where d = {STL-10, Food-
11, BCCD}, through the feature layers of VGG-19 to generate a feature embedding for a particular data
instance. A traditional usage of VGG-19, like in Section 4, would then pass the feature embedding
through the fully-connected classifier layers to produce a model prediction. In these experiments,
however, we pass the feature embedding through spiking classifier layers which then in turn produce
a spiking model prediction.

We implement our spiking neural network using core algorithm components outlined
by leaky integrate-and-fire model [63], with the following adjustments:
• Network update frequency minimization
• Customized simple loss calculation method on network output

5.1.1. Update Frequency Minimization

A typical leaky integrate-and-fire neuron receives input over a set time span. During
this time span, neurons must be updated multiple times to simulate temporal connectivity
on the actual circuit [29,35,45–47], which greatly increases the computation costs of simula-
tion. Since temporal connections are not a major factor in the VGG-19 image classification
tasks, our update frequency for each neuron can be as small as 1 timestep for each task.
Therefore, in our simulation for this experiment, we update neurons in each SNN layer
exactly once.
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Since we update neurons in each SNN layer exactly once, neurons will only fire at
most once. As a consequence, argmax is not applicable on our output layer. Argmax
chooses the maximum value from the output neurons as the true output, which make sure
the output to be exactly one classification. In absent of argmax, network will start to output
multiple classifications through activation of multiple neurons, which will be counted as
mis-classification. Therefore, the network should not only activate the correct neuron, but
it also should avoid the activation of incorrect neurons. Let n be the numbers of neurons
which equals to numbers of classes in the tasks. Let p be the actual accuracy of random
outputs, then:

p =
1
2
· 1

2n−1 =
1
2n (1)

of which 1
2 is the possibility of the correct neuron activates and 1

2n−1 is the possibilities of
all incorrect neurons do not fire.

5.1.2. Simple Loss Calculation

For each neuron in our SNN output, one spike indicates an output of 1.0 and no spikes
represents an output of 0.0. Therefore, the output of the SNN for each input will be an
array consisting exclusive of values in {0.0, 1.0}. Due to the simplicity of the output as a
binary array, we employ a customized simple gradient calculation method on the network
output, calculated as follows:

loss = target− output (2)

This simple method fits our SNN simulation for this experiment, because of the binary
output nature of our SNN. A binary output simply indicates whether a neuron fired or not.
Losses on the binary output imply whether the neurons on the output layer have fired or
not. Therefore, the polarity of the SNN output loss (i.e., whether it is positive or negative) is
sufficient for basic training. We believe that other, more complex loss calculation methods
have potential to perform better on these tasks, and that will be left to future explorations.

5.1.3. Gradient Calculation

Our network behaves according to the following equations:

vi =

(
n

∑
j=0

Ojwij + bi

)
ai (3)

Oi = H(vi)I (4)

H(v) =

{
1, if v ≥ θ

0, otherwise
(5)

where vi is the voltage of the neuron i, wij is the weight of the input given by neuron j to
neuron i, bi is the additive bias of the neuron i, ai is the amplifier bias, Oi is the output
of neuron i calculated by our Heaviside function H times I, which represents a neuron’s
output if fires, and θ is the activation threshold of neuron.

The gradient will then be calculated as:

gwij =
dOutput

dOi

dOi
dHi

dHi
dvi

dvi
dwj
· loss (6)

gai =
dOutput

dOi

dOi
dHi

dHi
dvi

dvi
dai
· loss (7)
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Since many researchers implement sigmoidal neurons, with steep sigmoid function, as a
replacement for Heaviside step function, we can safely assume:

dHi
dvi
≈ dSigmoid(dvi)

dvi
(8)

The sigmoid method in popular machine learning libraries behaves as follows:

dSigmoid(v)
dv

=


1 + s, if v ≥ θ, s ≈ 0
d, if v ≈ θ, with 0 < d < 1
s, otherwise

(9)

where s approaches 0, but never reaches 0. Most of modern day techniques requires sigmoid
to be steep, to minimize the window of v ≈ θ. Therefore, our method seeks to remove the
influence of v ≈ θ by using customized sigmoid derivative σ:

dSigmoid(v)
dv

≈ σv =

{
1, if v ≥ θ

s, otherwise, with s ≈ 0
(10)

However, this σ function causes firing neurons to be adjusted 1/s times faster than
non-firing neurons. Such behavior becomes most problematic on physical chips, due to the
fact that weight has its upper limit on physical chips. To make sure the weight adjustment
speed on non-firing neurons matches firing neurons we amplified the gradient on non-firing
neurons by 1/s. Then, σ = 1 for all firing and non-firing neurons.

As a result, our gradient function becomes:

gwij ≈
dOutput

dOi

dOi
dHi

dvi
dwij

· loss (11)

gaij ≈
dOutput

dOi

dOi
dHi

dvi
dai
· loss (12)

Since dvi
dwij

= O(vj) = H(vj) · I, and Heaviside step function produces 0 when vi < θ,
the gradient chain will break when the Heaviside function outputs 0.

Therefore, our Heaviside step function on the simulation side is modified as:

Hsim(v) =

{
1, if v ≥ θ

s, otherwise, with s ≈ 0
(13)

If s is small enough as it approaches 0, s poses no influence on the accuracy of simula-
tion comparing to hardware performance.

5.2. Neuromodulatory Tuning on Analog Hardware

One particularly advantageous aspect of neuromodulatory tuning (NT) is its suitability
for implementation on analog neuromorphic hardware. The behavior of fine-tuned bias
connections, implemented in digital simulations as additional bias neurons, can also be
implemented in analog hardware as a current source with a variable supply voltage. This
approach has the following advantages:
• Minimal additional chip area required
• Lower power consumption than digital hardware
• No need to re-load weights to the on-chip memory

To probe this possibility, we use Cadence Virtuoso to explore the feasibility of a
NT approach on simulated analog hardware. Our hardware is designed and simulated
at the transistor level in TSMC 28-nm CMOS. The analog neuron implements the leaky
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integrate-and-fire model [63]. Six binary-scaled current sources make up the synapse. A
current is driven onto a 50-fF capacitor to produce an integrated membrane voltage that is
quantized by a dynamically clocked latched comparator. An adjustable delay line generates
a 100-ns spike when the membrane voltage reaches the activation threshold and resets the
membrane voltage by connecting the capacitor to ground via a pull-down transistor. A
schematic diagram of our proposed neuron is shown in Figure 3.

Figure 3. Schematic diagram of the proposed leaky integrate-and-fire neuron with NT (VDD,variable)
capabilities. The Up and Down signals are generated from the input spike and weight signals.

5.2.1. Synapse Design

Each synapse operates at a supply voltage between 0.5 and 1 V. A higher supply
increases the current in the synapse. The neuron core operates at a constant supply of
1 V. Adjusting the supply voltage of individual synapses or groups of synapses effectively
changes the weights of the synapse connections. This change in behavior is analogous to the
bias neurons in the software implementation and to what is observed biologically [53,54].
To make the synapse current dependent on the supply voltage VDD, we use a current mirror
with a resistive load. The current through an N-type MOSFET is given by

IDS =
1
2

β(VGS −Vth)
2 (14)

In a current mirror, the gate voltage VG is related to VDD by

VG = VDD − IRS (15)

Substituting (14) into (15) and solving for I results in

I =
√
(4βRS(VDD −Vth)− 1) + 2βRS(VDD −Vth) + 1

2βR2
S

(16)

Equation (16) shows that the synapse current is a function of the supply voltage VDD, which
we tune to adjust the weights. Figure 4 shows the neuron behavior when we vary VDD from
550 mV to 750 mV. The higher supply results in a larger current, producing more spikes.
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Figure 4. Neuron outputs with the same input spike pattern and synaptic weights, but with varied
bias weights implemented as (a) VDD = 550 mV and (b) VDD = 750 mV.

The effect of a bias neuron with a weight of Wb on a synapse with weights Ws can be
approximated as I(Wb + Ws). The behavior of the analog implementation can be written
as kIW where k represents the change in the synapse current due to adjusting VDD. If
IWb = kW then the behavior of the two implementations is identical.

5.2.2. Neuron Core Design

A schematic of the neuron core is shown in Figure 5. The threshold comparator is
implemented with the StrongARM topology. We choose a clocked topology to reduce
static power, especially when compared to inverter based threshold detectors. Instead of a
fixed-period clock, we only clock the comparator after an input spike or after an output
spike. We use a 4-input NOR gate to generate the comparator clock. This ensures that
power consumption is minimized in a network trained for minimal spiking activity. The
membrane capacitance is always reset to Vrest = 250 mV and the comparator has a fixed
threshold of Vth,comp = 350 mV. We choose Vrest to give Vmem at least 100 mV of swing
without driving the synapse current sources into the triode region, even when the synapse
power supply is 0.5 V. Once the membrane potential crosses the preset threshold, the spike
generation circuit is triggered. The spike is generated using a self-reset DQ fip-flop with
current-starved inverter-based delay cells between Q and reset. The delay cells utilize
parasitic capacitance to increase delay so as to decrease the number of stages needed for a
certain spike width.

The membrane capacitor is a custom 50-fF finger capacitor which occupies only 27 µm2.
Because the membrane capacitance is only 50 fF, the neuron needs an extremely large
resistor for a sufficiently low leakage current. Instead of using a polysilicon resistor which
would occupy large area, we implement a CMOS pseudo resistor using a PMOS transistor
which occupies only 0.7 µm × 0.5 µm and achieves approximately 400 MΩ (Figure 6).
The pseudo-resistor is implemented as two PMOS transistors connected in a transdiode
configuration. The simplest of pseudo-resistors have an asymmetric resistance-voltage
characteristic, making them unusable for this neuron because the membrane potential can
go both above and below Vrest, and must have the same up and down leakage current. To
solve this, we use two psuedo-resistors in parallel with opposite connections polarities. This
halves the effective resistance, but creates a symmetric resistance-voltage characteristic.
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Figure 5. Schematic of the threshold comparator with dynamic clocking, and tunable spike genera-
tor circuit.
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Figure 6. Schematic of (a) a one-directional pseudo-resistor and its asymmetric resistance characteris-
tic and (b) the proposed pseudo-resistor showing symmetric resistance characteristics.

6. Results

Our long-term objective is to enable low-power analog learning behaviors in situ on
physical analog chips. This requires both a viable mechanism for potential in situ learning
that does not require large amounts of surface area for gradient calculations and a validated
circuit design that can realistically implement that mechanism. We present neuromodula-
tory tuning as a possible mechanism for this objective, and here provide results showing its
performance in simulated (digital) spiking neural networks (Section 6.1) and a full chip
design for its eventual implementation on physical CMOS hardware (Section 6.2).

6.1. Neuromodulatory Tuning on Spiking Neural Networks

To validate the performance of neuromodulatory tuning in spiking neural networks
(distinct from the traditional feed-foward networks shown in Section 4), we apply neuro-
modulatory tuning (NT) and traditional fine-tuning (TFT) to the SNN-VGG classification
layers using the STL-10, Food-11, and BCCD datasets for comparison. We fix the batch size
at 64 for all training, since our experiment with batch sizes (shown in Table 6) reveals that
batch size does not impact the model performance dramatically. Both the Food-11 and
BCCD datasets are singularly distinct from the ImageNet data [56] which was used to train
VGG-19. VGG-19 therefore lacks output classes corresponding to labels from the Food-11
and BCCD datasets. To create the necessary output layer size, we added one extra fully
connected layer at the end of each model. This extra layer functions as the output layer for
corresponding classes in Food-11 and BCCD. Different from Food-11 and BCCD, STL-10 is
a subset of ImageNet. Since VGG-19 is trained on ImageNet, VGG-19 contains classes that
are contained within in STL-10 labels. Therefore, we do not add extra layers for the SNN
STL-10 experiments. All SNN models were trained on an AMD Ryzen Threadripper 1920X
12-Core Processor. Results are shown in Tables 7 and 8.
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As expected, performance is poor when no tuning is applied. This is partially because
SNN architectures, comprised of leaky integrate-and-fire neurons, differ drastically from
traditional deep networks in both signal accumulation and signal propagation, resulting in
almost 0% accuracy on all three transfer tasks. Tuning improves this accuracy, achieving
up to 88% accuracy with TFT and 50% with NT on some tasks with certain learning rates.
According to our results shown in Table 7, NT underperforms on the STL-10 dataset
comparing to TFT, has equal performance to TFT on BCCD, and outperforms TFT on Food-
11, which suggests that neuromodulatory tuning can positively impact learning behaviors
on brain-like architectures.

Our performance comparison of the algorithms is influenced by differences between
the three datasets. STL-10 is the subset of the dataset used to train VGG-19, so tasks in STL-
10 is more native to the network. In contrast, Food11 and BCCD are foreign to the VGG-19
network, so those tasks will require VGG-19 to make adjustments in larger magnitudes
or completely re-learn the task. Given that neuromodulatory tuning outperforms TFT
on Food11, a foreign dataset, and that TFT requires changes of larger magnitudes, NT
is superior for these cases. There are accuracies below random guessing, this might be
caused by the low learning rate for NT and the absence of feed-forward to spiking network
conversion algorithm for TFT.

Comparing two different types of NT, NT1 performs better than NT2 on STL-10 dataset,
and has equal performance with NT2 on Food-11 and BCCD dataset.

According to Table 8, TFT requires over 120 million parameters adjustment to achieve
such performance, so the adjustments are impossible to implement on the physical chips.
In contrast, NT method only requires 9000–20,000 adjustments, which is implementable on
physical chips. Note, the parameter values for NT differ slightly in Table 8 from Table 5
due to the difference in implementing a spiking network versus a feed-forward network.

Table 6. Validation accuracy on the Food-11 dataset on SNN after 10 epochs, mean of 10 training runs
using bath sizes (bs) = {16, 32, 64, 128}.

acc (bs = 16) acc (bs = 32) acc (bs = 64) acc (bs = 128)

NT1 (lr = 0.1) 0.4568 0.4605 0.4570 0.4647
TFT (lr = 0.1) 0.1304 0.1243 0.1145 0.0770

Table 7. Validation accuracy on STL-10, Food-11, and the BCCD dataset in a spiking neural network
(SNN) architecture. Models were trained for 50 epochs for STL-10, Food11, and the BCCD dataset,
respectively. Average of five training runs. Best per-task performance of neuromodulatory tuning
(NT2) and traditional fine-tuning (TFT), respectively, is underlined. NT2 refers to the modify existing
bias implementation of NT and NT1 refers to the additional bias implementation described in
Section 3.2.

lr 0.0001 lr 0.001 lr 0.01 lr 0.1

no tuning 0.0007 0.0007 0.0007 0.0007
TFT 0.8888 0.8014 0.2582 0.1274

STL-10 NT2 0.0000 0.0000 0.3052 0.3062
NT1 0.0000 0.0009 0.5428 0.5731
additive bias 0.0010 0.0008 0.0006 0.0025

no tuning 0.0341 0.0341 0.0341 0.0341
TFT 0.0147 0.0729 0.1017 0.1168

Food-11 NT2 0.0063 0.3645 0.4537 0.4615
NT1 0.0020 0.3678 0.4564 0.4665
additive bias 0.0840 0.1864 0.1404 0.1414
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Table 7. Cont.

lr 0.0001 lr 0.001 lr 0.01 lr 0.1

no tuning 0.0005 0.0005 0.0005 0.0005
TFT 0.1003 0.2508 0.2507 0.2508

BCCD NT2 0.2501 0.2509 0.1371 0.0680
NT1 0.2508 0.2509 0.2041 0.0591
additive bias 0.1848 0.2137 0.2144 0.2505

Table 8. Validation accuracy and parameter on STL-10, Food-11, and the BCCD dataset in a spiking
neural network (SNN) architecture. Models were trained for 50 epochs for STL-10, Food11, and
the BCCD dataset, respectively. Accuracy from the learning rate with best average accuracy of five
training runs. NT2 refers to the modify existing bias implementation of NT and NT1 refers to the
additional bias implementation described in Section 3.2.

Best Accuracy Parameter Amount

TFT 0.8888 123,642,856
STL-10 NT2 0.3062 9192

NT1 0.5731 9192
additive bias 0.0025 9192

TFT 0.0356 123,653,867
Food-11 NT2 0.4615 20,203

NT1 0.4665 20,203
additive bias 0.1864 20,203

TFT 0.2508 123,646,860
BCCD NT2 0.2509 13,196

NT1 0.2509 13,196
additive bias 0.2505 13,196

6.2. Analog Neuromorphic Hardware Simulation

The goal of this work is to develop a low-power CMOS chip architecture that imple-
ments neuromodulatory tuning. In addition to presenting the neuromodulatory tuning
algorithm and exploring its performance, we also present a complete neuron design to
implements this algorithm on analog CMOS hardware.

Figure 7 shows the layout of the proposed neuron implementing NT fine tuning. The
entire neuron, synapse and weight storage occupies only 598 um2, with the neuron core
(including membrane capacitor) occupying only 132 nm2. We have validated the simulation
results from Section 6.1 using post-layout simulations in Cadence Virtuoso to model an
XOR task using spiking neurons. Two neurons were chosen to be the inputs to the XOR
“gate” and another designated as the output. A train of 10 spikes to an input neuron
constituted a “1”. No input spikes constituted a “0”. The spikes propagated through the
network according to the trained weights. The output was “0” if less than three spikes were
observed at the output, otherwise the output was a “1”. The analog simulation showed
2 spikes at the output for a 0, and 4 for a 1.

The proposed neuron achieves performance competitive with the state-of-the-art in
standalone neuron circuits (see Table 9). The total power for the neuron core varies with
spike rate. Figure 7 shows the distribution of power for two spike rates and Figure 8 shows
the energy/spike vs. spike rate.
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Figure 7. The distribution of power within the neuron core.
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Figure 8. The energy/spike decreases as VDD increases. This is because a higher VDD yields a higher
synapse current and therefore more output spikes for the same number of input spikes.

Table 9. Comparison of our proposed neuron implementing neuromodulatory tuning with the state
of the art in standalone neurons. * Total area includes neuron core, synapse, and weight storage.

This Work Joubert et al.,
2012

Cruz-Albrecht et al.,
2012

Rangan et al.,
2010 Jayawan 2008

Process (nm) 28 65 90 90 350

Area µm2 598 (Total *)
132 (Core) 538 442 897 2800

Max fspike (Hz) 3.3M 1.9M 100 7k 1M

Energy/spike (pJ) 1.08 41 0.4 1 9

7. Conclusions

Low-power analog machine learning has the potential to revolutionize multiple disci-
plines, but only if novel and physically-implementable learning algorithms are developed
that enable in situ behavior modification on physical analog hardware. This paper presents
a novel task transfer algorithm, termed neuromodulatory tuning, for machine learning
based on biologically-inspired principles. On image recognition tasks, neuromodulatory
tuning performs on test cases as well as traditional fine-tuning methods while requiring
four orders of magnitude fewer active training parameters (although the total number of
weights is comparable between methods). We verify this result using both deep forward
networks and spiking neural network architectures. We also present a circuit design for a
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neuron that immplements neuromodulatory tuning, a potential layout for the use of such
neurons on an analog chip, and a post-layout verification of its capabilities.

Neuromodulatory tuning has the advantage of being well-suited for implementa-
tion on neuromorphic hardware, enabling circuit implementations that support life-long
learning for applications that require energy-efficient adaptation to constantly changing
conditions, such as robotics, unmanned air vehicle guidance, and prosthetic limb con-
trollers. Future research in this area should focus on probing the performance of NT in
domains beyond image recognition; exploring the possibility of paired bias links in which
multiple neurons connect to a single power domain region; and designing improved SNN
update algorithms with stronger convergence properties.
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